Multi-Omics Technologies Perspectives in Studying of Autism Spectrum Disorders
https://doi.org/10.15690/pf.v22i6.2981
Abstract
Autism spectrum disorders (ASD) are a group of psychological development disorders characterized by high heterogeneity of phenotypical and underlying biological mechanisms. To this date, there is no single concept of ASD etiology and pathogenesis; however, many studies discuss complex impact of genetic, epigenetiс, and exposomal factors on impaired neurodevelopment in children. Currently therapeutic approaches for ASD are symptomatic despite the dynamic research of autism issue. The high degree of etiopathogenetic and clinical differences dictates the need to find new methods for studying autism. Increasing number of people with ASD worldwide in recent decades, challenging early diagnosis, timely diagnosis and therapy require deeper, comprehensive study of ASD with innovative research methods. This review focuses on multi-omics — integrative approach to analysis of data obtained via high-tech omix studies (genomics, transcriptomics, epigenomics, proteomics, metabolomics, and microbiomics). Its implementation will provide the opportunity for better understanding of etiopathogenetic mechanisms and development of personalized strategies for autism diagnosis and management.
Keywords
About the Authors
Natalia V. UstinovaRussian Federation
MD, PhD.
10, Fotieva Str., building 1, Moscow, 119333
Disclosure of interest:
Not declared
Elena A. Gorbunova
Russian Federation
MD, PhD.
Moscow
Disclosure of interest:
Not declared
References
1. Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–444. doi: https://doi.org/10.1038/s41588-019-0344-8
2. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018;392(10146):508–520. doi: https://doi.org/10.1016/S0140-6736(18)31129-2
3. Satterstrom FK, Kosmicki JA, Wang J, et al. Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020;180(3):568–584.e23. doi: https://doi.org/10.1016/j.cell.2019.12.036
4. Higdon R, Earl RK, Stanberry L, et al. The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS. 2015;19(4):197–208. doi: https://doi.org/10.1089/omi.2015.0020
5. Phillips JW, Schulmann A, Hara E, et al. A repeated molecular architecture across thalamic pathways. Nat Neurosci. 2019;22(11):1925–1935. doi: https://doi.org/10.1038/s41593-019-0483-3
6. Parikshak NN, Swarup V, Belgard TG, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540(7633):423–427. doi: https://doi.org/10.1038/nature20612
7. Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol. 2015;6:107. doi: https://doi.org/10.3389/fneur.2015.00107
8. Nóbrega IS, Teles E Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci. 2024;25(11):5816. doi: https://doi.org/10.3390/ijms25115816
9. Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13. doi: https://doi.org/10.1186/s13229-017-0121-4
10. Broek JA, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism. 2014;5:41. doi: https://doi.org/10.1186/2040-2392-5-41
11. Borkowska EM, Kruk A, Jedrzejczyk A, et al. Molecular subtyping of bladder cancer using Kohonen self-organizing maps. Cancer Med. 2014;3(5):1225–1234. doi: https://doi.org/10.1002/cam4.217
12. Frye RE. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav. 2015;47:147–157. doi: https://doi.org/10.1016/j.yebeh.2014.08.134
13. Sharon G, Cruz NJ, Kang DW, et al. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell. 2019;177(6):1600–1618.e17. doi: https://doi.org/10.1016/j.cell.2019.05.004
14. Kovac J, Aleksic B, Krgovic D. Editorial: Multiomics approaches for understanding autism spectrum disorder. Front Neurosci. 2025;19:1542260. doi: https://doi.org/10.3389/fnins.2025.1542260
15. Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362(6420):eaat8127. doi: https://doi.org/10.1126/science.aat8127
16. Osama A, Anwar AM, Ezzeldin S, et al. Integrative multiomics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions. J Adv Res. 2025:S2090-1232(25)00055-4. doi: https://doi.org/10.1016/j.jare.2025.01.036
17. Yoon S, Munoz A, Yamrom B, et al. Rates of contributory de novo mutation in high and low-risk autism families. Commun Biol. 2021;4(1):1026. doi: https://doi.org/10.1038/s42003-02102533-z
18. Lombardo MV, Pramparo T, Gazestani V, et al. Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes. Nat Neurosci. 2018;21(12):1680–1688. doi: https://doi.org/10.1038/s41593-018-0281-3
19. Zhuang H, Liang Z, Ma G, et al. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (2020). 2024;5(3):e497. doi: https://doi.org/10.1002/mco2.497
20. Parikshak NN, Luo R, Zhang A, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155(5):1008–1021. doi: https://doi.org/10.1016/j.cell.2013.10.031
21. Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selectionbased machine learning. Transl Psychiatry. 2015;5(2):e514. doi: https://doi.org/10.1038/tp.2015.7
22. Hewitson L, Mathews JA, Devlin M, et al. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One. 2021;16(2):e0246581. doi: https://doi.org/10.1371/journal.pone.0246581
23. West PR, Amaral DG, Bais P, et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One. 2014;9(11):e112445. doi: https://doi.org/10.1371/journal.pone.0112445
24. Frazier TW, Embacher R, Tilot AK, et al. (2014). Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20(9):1132– 1138. doi: https://doi.org/10.1038/mp.2014.125
25. Bernier R, Golzio C, Xiong B, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263–276. doi: https://doi.org/10.1016/j.cell.2014.06.017
26. O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–250. doi: https://doi.org/10.1038/nature10989
27. Jensen AR, Lane AL, Werner BA, et al. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther. 2022;26(5):483–495. doi: https://doi.org/10.1007/s40291-022-00600-7
28. Frye RE, Rose S, Boles RG, Rossignol DA. A Personalized Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med. 2022;12(2):147. doi: https://doi.org/10.3390/jpm12020147
Review
For citations:
Ustinova N.V., Gorbunova E.A. Multi-Omics Technologies Perspectives in Studying of Autism Spectrum Disorders. Pediatric pharmacology. 2025;22(6):727-731. (In Russ.) https://doi.org/10.15690/pf.v22i6.2981
JATS XML



































