Фармакологическая безопасность при беременности: принципы тератогенеза и тератогенность лекарственных средств
https://doi.org/10.15690/pf.v13i2.1551
Аннотация
Используемые во время беременности лекарственные средства оказывают одновременное воздействие на систему мать–будущий ребенок. Статья, посвященная проблеме применения лекарственных препаратов с потенциальными тератогенными свойствами, указывает на необходимость дальнейших исследований в области фармакологической безопасности при беременности. Авторы анализируют различные механизмы развития врожденных дефектов у ребенка в период внутриутробного развития, в т. ч. в результате использования лекарственных средств. По этическим соображениям при беременности трудно проводить исследования безопасности лекарственных средств. По мнению авторов, полезным может быть сбор дополнительной информации в пострегистрационный период как в рамках рутинного фармаконадзора, так и в ходе целенаправленных фармакоэпидемиологических исследований с текущей оценкой тератогенного риска ЛС.
Ключевые слова
Об авторах
О. В. РешетькоРоссия
доктор медицинских наук, заведующая кафедрой фармакологии Саратовского государственного медицинского университета им. В.И. Разумовского Адрес: 410071, Саратов, ул. Большая Казачья, д. 112, тел.: +7 (8452) 51-15-32
К. А. Луцевич
Россия
Н. И. Клименченко
Россия
Список литературы
1. Alfirevic A, Alfirevic Z, Pirmohamed M. Pharmacogenetics in reproductive and perinatal medicine. Pharmacogenomics. 2010; 11(1):65–79. doi: 10.2217/pgs.09.153.
2. Parisi MA, Spong CY, Zajicek A, Guttmacher A. We don’t know what we don’t study: the case for research on medication effects in pregnancy. Am J Med Genet C Semin Med Genet. 2011;157(3): 247–250. doi: 10.1002/ajmg. c.30309.
3. Wilffert B, Altena J, Tijink L, et al. Pharmacogenetics of druginduced birth defects: what is known so far? Pharmacogenomics. 2011;12(4):547–558. doi: 10.2217/pgs.10.201.
4. Einarson A. Studying the safety of drugs in pregnancy: and the gold standard is. J Clin Pharmacol Pharmacoepidemiol. 2010;1:3–8.
5. Schachter AD, Kohane IS. Drug target gene signatures that predict teratogenicity are enriched for developmentally related genes. Reprod Toxicol. 2011;31(4):562–569. doi: 10.1016/j.reprotox.2010.11.008.
6. Mitchell AA. Adverse drug reactions in utero: perspectives on teratogens and strategies for the future. Clin Pharmacol Ther. 2011;89(6):781–783. doi: 10.1038/clpt.2011.52.
7. Obican S, Scialli AR. Teratogenic exposures. Am J Med Genet C Semin Med Genet. 2011;157(3):150–169. doi: 10.1002/ajmg. c.30310.
8. Шер С. А. Тератогенное воздействие лекарственных средств на организм будущего ребенка на этапе внутриутробного развития // Педиатрическая фармакология. — 2011. — Т. 8. — № 6. —С. 57–60. [Sher SA. Teratogenic effects of drugs on the organism of a future child during fetal stage of development. Pediatricheskaya farmakologiya. 2011;8(6):57–60. (In Rus).]
9. Иванова А. А., Михайлов А. В., Колбин А. С. Тератогенные свойства лекарств. История вопроса // Педиатрическая фармакология. — 2013. — Т. 10. — № 1. — С. 46–53. [Ivanova AA, Mikhailov AV, Kolbin AS. Teratogenic properties of drugs. Background information. Pediatricheskaya farmakologiya. 2013;10(1): 46–53. (In Rus).] doi: 10.15690/pf.v10i1.588.
10. WHO/CDC/ICBDSR. Birth defects surveillance: a manual for programme managers [Internet]. Geneva: World Health Organization; 2014. Available from: http://www.cdc.gov/ncbddd/birthdefectscount/documents/bd-surveillance-manual.pdf.
11. De Vane L, Goetzl LM, Ramamoorthy S. Exposing fetal drug exposure. Clin Pharmacol Ther. 2011;89(6):786–788. doi: 10.1038/clpt.2011.67.
12. Blumenfeld YJ, Reynolds-May MF, Altman RB, El-Sayed YY. Maternal fetal and neonatal pharmacogenomics: a review of current literature. J Perinatol. 2010;30:571–579. doi: 10.1038/jp.2009.183.
13. Nordeng H, Ystrom E, Eberhard-Gran M. Medication safety in pregnancy — Results from the MoBa study. Norsk Epidemiologi. 2014;24:161–168.
14. Jelinek R. The contribution of new findings and ideas to the old principles of teratology. Reprod Toxicol. 2005;20(3):295–300. doi: 10.1016/j.reprotox.2005.03.011.
15. Friedman JM. The principles of teratology: are they still true? Birth Defects Res A Clin Mol Teratol. 2010;88(10):766–768. doi: 10.1002/bdra.20697.
16. Friedman JM. How do we know if an exposure is actually teratogenic in humans? Am J Med Genet C Semin Med Genet. 2011;157(3):170–174. doi: 10.1002/ajmg. c.30302.
17. Shepard TH. «Proof» of human teratogenicity. Teratology. 1994;50:97–98.
18. Holmes LB. Human teratogens: Update 2010. Birth Defects Res A Clin Mol Teratol. 2011;91(1):1–7. doi: 10.1002/bdra.20748.
19. Wilson RD, Johnson JA, Summers A, et al. Principles of human teratology: drug, chemical and infectious exposure. SOGC Clinical Practice Guideline. J Obstet Gynaecol Can. 2007;29(11):911–917. doi: 10.1016/s1701-2163(16)32668-8.
20. Uhl K, Trontell A, Kennedy D. Risk minimization practices for pregnancy prevention: understanding risk, selecting tools. Pharmacoepidemiol Drug Saf. 2007;16(3):337–348. doi: 10.1002/pds.1312.
21. Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75(5):409–423. doi: 10.1111/j.1399-0004.2009.01174.x.
22. Kalter H. Teratology in the twentieth century. Congenital malformations in humans and how their environmental causes were established. Amsterdam: Elsevier; 2003.
23. Van Gelder MMHJ, Van Rooij IALM, Miller RK, et al. Teratogenic mechanisms of medical drugs. Hum Reprod Update. 2010;16(4): 378–394. doi: 10.1093/humupd/dmp052.
24. van der Put NMJ, van Straaten HWM, Trijbels FJM, Blom HJ. Folate, homocysteine and neural tube defects: an overview. Exp Biol Med. 2001;226(4):243–270.
25. Czeizel AE. Periconceptional folic acid and multivitamin supplementation for the prevention of neural tube defects and other congenital abnormalities. Birth Defects Res A Clin Mol Teratol. 2009;85(4):260–268. doi: 10.1002/bdra.20563.
26. Botto LD, Yang Q. 5,10-methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000;151(9):862–877. doi: 10.1093/oxfordjournals.aje.a010290.
27. van der Linden IJM, den Heijer M, Afman LA, et al. The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida. J Mol Med. 2006;84(12):1047–1054. doi: 10.1007/s00109-006-0093-x.
28. van Beynum IM, Kapusta L, den Heijer M, et al. Maternal MTHFR 677C>T is a risk factor for congenital heart defects: effect modification by periconceptional folate supplementation. Eur Heart J. 2006;27(8):981–987. doi: 10.1093/eurheartj/ ehi815.
29. Hernandez-Diaz S, Werler MM, Walker AM, et al. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med. 2000;343(22):1608–1614. doi: 10.1056/nejm200011303432204.
30. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol. 2001;153(10):961–968. doi: 10.1093/aje/153.10.961.
31. Meijer WM, de Walle HEK, Kerstjens-Frederikse WS, et al. Folic acid sensitive birth defects in association with intrauterine exposure to folic acid antagonists. Reprod Toxicol. 2005;20(2):203–207. doi: 10.1016/j.reprotox.2005.01.008.
32. Malm H, Kajantie E, Kivirikko S, et al. Valproate embryopathy in three sets of siblings: further proof of hereditary susceptibility. Neurology. 2002;59(4):630–633. doi: 10.1212/wnl.59.4.630.
33. Kini U, Lee R, Jones A, et al. Influence of the MTHFR genotype on the rate of malformations following exposure to antiepileptic drugs in utero. Eur J Med Genet. 2007;50(6):411–420. doi: 10.1016/j.ejmg.2007.08.002.
34. Stoller JZ, Epstein JA. Cardiac neural crest. Semin Cell Dev Biol. 2005;16(6):704–715. doi: 10.1016/j.semcdb.2005.06.004.
35. Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem. 2000;267(14):4315–4324. doi: 10.1046/j.1432-1327.2000.01497.x.
36. Fujii H, Sato T, Kaneko S, et al. Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J. 1997;16(14):4163–4173. doi: 10.1093/emboj/16.14.4163.
37. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina: association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(16): 878–881. doi: 10.1056/nejm197104222841604.
38. Hernandez-Diaz S, Mitchell AA, Kelley KE, et al. Medications as a potential source of exposure to phthalates in the U. S. population. Environ Health Perspect. 2009;117(2):185–189. doi: 10.1289/ehp.11766.
39. Giwercman A, Rylander L, Giwercman YL. Influence of endocrine disruptors on human male fertility. Reprod Biomed Online. 2007; 15(6):633–642. doi: 10.1016/s1472-6483(10)60530-5.
40. Diav-Citrin O, Park YH, Veerasuntharam G, et al. The safety of mesalamine in human pregnancy: a prospective controlled cohort study. Gastroenterology. 1998;114(1):23–28. doi: 10.1016/s0016-5085(98)70628-6.
41. Gill SK, O’Brien L, Einarson TR, et al. The safety of proton pump inhibitors (PPIs) in pregnancy: a meta-analysis. Am J Gastroenterol. 2009;104(6):1541–1545. doi: 10.1038/ajg.2009.122.
42. Sahambi SK, Hales BF. Exposure to 5-bromo-2 deoxyuridine induces oxidative stress and activator protein–1 DNA binding activity in the embryo. Birth Defects Res A Clin Mol Teratol. 2006; 76(8):580–591. doi: 10.1002/bdra.20284.
43. Wellfelt K, Skold AC, Wallin A, et al. Teratogenicity of the class III antiarrhythmic drug almokalant. Role of hypoxia and reactive oxygen species. Reprod Toxicol. 1999;13(2):93–101. doi: 10.1016/s0890-6238(98)00066-5.
44. Hansen JM, Harris C. A novel hypothesis for thalidomideinduced limb teratogenesis: redox misregulation of the NF-kB pathway. Antioxid Redox Signal. 2004;6(1):1–14. doi: 10.1089/152308604771978291.
45. Winn LM, Wells PG. Maternal administration of superoxide dismutase and catalase in phenytoin teratogenicity. Free Radic Biol Med. 1999;26(3–4):266–274. doi: 10.1016/s0891-5849(98)00193-2.
46. Defoort EN, Kim PM, Winn LM. Valproic acid increases conser vative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects. Mol Pharmacol. 2006;69(4): 1304–1310. doi: 10.1124/mol.105.017855.
47. Scholl TO. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81(5):1218–1222.
48. Foster W, Myllynen P, Winn LM, et al. Reactive oxygen species, diabetes and toxicity in the placenta: a workshop report. Placenta. 2008;29:105–107. doi: 10.1016/j.placenta.2007.10.014.
49. Azzato EM, Chen RA, Wacholder S, et al. Maternal EPHX1 polymorphisms and risk of phenytoin-induced congenital malformations. Pharmacogenet Genomics. 2010;20(1):58–63. doi: 10.1097/FPC.0b013e328334b6a3.
50. Chevrier C, Bahuau M, Perret C, et al. Genetic susceptibilities in the association between maternal exposure to tobacco smoke and the risk of nonsyndromic oral cleft. Am J Med Genet A. 2008; 146A(18):2396–2406. doi: 10.1002/ajmg. a.32505.
51. Shi M, Christensen K, Weinberg CR, et al. Orofacial cleft risk is increased with maternal smoking and specific detoxification gene variants. Am J Hum Genet. 2007;80(1):76–90. doi: 10.1086/510518.
52. van Rooij I, Wegerif MJ, Roelofs HM, et al. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology. 2001;12(5):502–507. doi: 10.1097/00001648-200109000-00007.
53. Hartsfield JK Jr, Hickman TA, Everett ET, et al. Analysis of the EPHX1 113 polymorphism and GSTM1 homozygous null polymorphism and oral clefting associated with maternal smoking. Am J Med Genet. 2001;102(1):21–24. doi: 10.1002/1096-8628 (20010722)102:1<21::aid-ajmg1409>3.0.co;2-t.
54. Lie RT, Wilcox AJ, Taylor J, et al. Maternal smoking and oral clefts: the role of detoxification pathway genes. Epidemiology.2008;19(4):606–615. doi: 10.1097/ede.0b013e3181690731.
55. Orioli IM, Castilla EE. Epidemiological assessment of misoprostol teratogenicity. BJOG. 2000;107(4):519–523. doi: 10.1111/j.1471-0528.2000.tb13272.x.
56. Vargas FR, Schuler-Faccini L, Brunoni D, et al. Prenatal exposure to misoprostol and vascular disruption defects: a case-control study. Am J Med Genet. 2000;95(4):302–306. doi: 10.1002/1096-8628 (20001211)95:4<302: aid-ajmg2>3.0.co;2-b.
57. Kozer E, Nikfar S, Costei A, et al. Aspirin consumption during the first trimester of pregnancy and congenital anomalies: a metaanalysis. Am J Obstet Gynecol. 2002;187(6):1623–1630. doi: 10.1067/mob.2002.127376.
58. Werler MM, Mitchell AA, Shapiro S. The relation of aspirin use during the first trimester of pregnancy to congenital cardiac defects. N Engl J Med. 1989;321(24):1639–1642. doi: 10.1056/nejm198912143212404.
59. Raymond GV. Teratogen update: ergot and ergotamine. Teratology. 1995;51(5):344–347. doi: 10.1002/tera.1420510511.
60. Smets K, Zecic A, Willems J. Ergotamine as a possible cause of Mobius sequence: additional clinical observation. J Child Neurol. 2004;19(5):398. doi: 10.1177/08830738040 1900518.
61. Werler MM, Sheehan JE, Hayes C, et al. Vasoactive exposures, vascular events, and hemifacial microsomia. Birth Defects Res A Clin Mol Teratol. 2004;70(6):389–395. doi: 10.1002/bdra.20022.
62. Schutz S, Le Moullec JM, Corvol P, Gasc JM. Early expression of all the components of the renin-angiotensin-system in human development. Am J Pathol. 1996;149(6):2067–2079.
63. Himmelmann A, Hansson L, Hansson BG, et al. ACE inhibition preserves renal function better than beta-blockade in the treatment of essential hypertension. Blood Press. 1995;4(2):85–90. doi: 10.3109/08037059509077575.
64. Shotan A, Widerhorn J, Hurst A, et al. Risks of angiotensinconverting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med. 1994;96(5):451–456. doi: 10.1016/0002-9343(94)90172-4.
65. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006;354(23):2443–2451. doi: 10.1056/nejmoa055202.
66. Alwan S, Polifka JE, Friedman JM. Angiotensin II receptor antagonist treatment during pregnancy. Birth Defects Res A Clin Mol Teratol. 2005;73(2):123–130. doi: 10.1002/bdra.20102.
67. Gofflot F, Hars C, Illien F, et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum Mol Genet. 2003;12(10):1187–1198. doi: 10.1093/hmg/ddg129.
68. Petersen EE, Mitchell AA, Carey JC, et al. Maternal exposure to statins and risk for birth defects: a case-series approach. Am J Med Genet A. 2008;146A(20):2701–2705. doi: 10.1002/ajmg. a.32493.
69. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: a cohort study. BMJ. 2015;350:h1035. doi: 10.1136/bmj.h1035.
70. Menegola E, Di Renzo F, Broccia ML, et al. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol. 2005;74(5):392–398. doi: 10.1002/bdrb.20053.
71. Di Renzo F, Cappelletti G, Broccia ML, et al. Boric acid inhibits embryonic histone deacetylases: a suggested mechanism to explain boric acid related teratogenicity. Toxicol Appl Pharmacol. 2007; 220(2):178–185. doi: 10.1016/j.taap.2007.01.001.
72. Eikel D, Lampen A, Nau H. Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Chem Res Toxicol. 2006;19(2):272–278. doi: 10.1021/tx0502241.
73. Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734– 36741. doi 10.1074/jbc.M101287200.
74. Yoshida M, Kijima M, Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990;265(28):17174–17179.
75. Di Renzo F, Cappelletti G, Broccia ML, et al. The inhibition of embryonic histone deacetylases as the possible mechanism accounting for axial skeletal malformations induced by sodium salicylate. Toxicol Sci. 2008;104:397–404. doi: 10.1093/ toxsci/kfn094.
76. Streck RD, Kumpf SW, Ozolins TR, et al. Rat embryos express transcripts for cyclooxygenase-1 and carbonic anhydrase-4, but not for cyclooxygenase-2, during organogenesis. Birth Defects Res B Dev Reprod Toxicol. 2003;68(1):57–69. doi: 10.1002/bdrb.10006.
77. Cappon GD, Cook JC, Hurtt ME. Relationship between cyclooxygenase 1 and 2 selective inhibitors and fetal development when administered to rats and rabbits during the sensitive periods for heart development and midline closure. Birth Defects Res B Dev Reprod Toxicol. 2003;68(1):47–56. doi: 10.1002/bdrb.10008.
78. Nielsen GL, Sorensen HT, Larsen H, et al. Risk of adverse birth outcome and miscarriage in pregnant users of non-steroidal anti-inflammatory drugs: population based observational study and case-control study. BMJ. 2001;322(7281):266–270. doi: 10.1136/bmj.322.7281.266.
79. Cleves MA, Savell VH, Raj S, et al. Maternal use of acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), and muscular ventricular septal defects. Birth Defects Res A Clin Mol Teratol. 2004;70(3):107–113. doi: 10.1002/bdra.20005.
80. Ofori B, Oraichi D, Blais L, et al. Risk of congenital anomalies in pregnant users of non-steroidal anti-inflammatory drugs: a nested case-control study. Birth Defects Res B Dev Reprod Toxicol. 2006;77(4):268–279. doi: 10.1002/bdrb.20085.
81. Cook JC, Jacobson CF, Gao F, et al. Analysis of the nonsteroidal anti-inflammatory drug literature for potential developmental toxicity in rats and rabbits. Birth Defects Res B Dev Reprod Toxicol. 2003;68(1):5–26. doi: 10.1002/bdrb.10005.
82. Kallio H, Pastorekova S, Pastorek J, et al. Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC Dev Biol. 2006;6(1):22. doi: 10.1186/1471-213x-6-22.
83. Scott WJ, Duggan CA, Schreiner CM, et al. Reduction of embryonic intracellular pH: a potential mechanism of acetazolamide induced limb malformations. Toxicol Appl Pharmacol. 1990;103(2):238–254. doi: 10.1016/0041-008x(90)90227-l.
84. Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12(3):529–540. doi: 10.1016/0896-6273(94)90210-0.
85. Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA recep tors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–74. doi: 10.1126/science. 283.5398.70.
86. Kornhuber J, Bormann J, Hubers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDAreceptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol. 1991;206(4):297–300. doi: 10.1016/0922- 4106(91)90113-v.
87. Andaloro VJ, Monaghan DT, Rosenquist TH. Dextromethorphan and other N-methyl-D-aspartate receptor antagonists are teratogenic in the avian embryo model. Pediatr Res. 1998;43(1):1–7. doi: 10.1203/00006450-199801000-00001.
88. Bennett GD, VanWaes J, Moser K, et al. Failure of homocysteine to induce neural tube defects in a mouse model. Birth Defects Res B Dev Reprod Toxicol. 2006;77(2):89–94. doi: 10.1002/bdrb.20071.
89. Akesson E, Kjaeldgaard A, Samuelsson EB, et al. Ionotropic glutamate receptor expression in human spinal cord during first trimester development. Brain Res Dev Brain Res. 2000;119(1): 55–63. doi: 10.1016/s0165-3806(99)00158-3.
90. Varju P, Katarova Z, Madarasz E, et al. GABA signalling during development: new data and old questions. Cell Tissue Res. 2001; 305(2):239–246. doi: 10.1007/s004410100356.
91. Dolovich LR, Addis A, Vaillancourt JM, et al. Benzodiazepine use in pregnancy and major malformations of oral cleft: metaanalysis of cohort and case-control studies. BMJ. 1998;317(7162): 839–843. doi: 10.1136/bmj.317.7162.839.
92. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. A populationbased case-control study of oral chlordiazepoxide use during pregnancy and risk of congenital abnormalities. Neurotoxicol Teratol. 2004;26(4):593–598. doi: 10.1016/j.ntt.2004.03.009.
93. Wikner BN, Stiller CO, Bergman U, et al. Use of benzodiazepines and benzodiazepine receptor agonists during pregnancy: neonatal outcome and congenital malformations. Pharmacoepidemiol Drug Saf. 2007;16(11):1203–1210. doi: 10.1002/pds.1457.
94. Lin AE, Peller AJ, Westgate MN, et al. Clonazepam use in pregnancy and the risk of malformations. Birth Defects Res A Clin Mol Teratol. 2004;70(8):534–536. doi: 10.1002/bdra.20051.
95. Nebigil CG, Hickel P, Messaddeq N, et al. Ablation of serotonin 5-HT2B receptors in mice leads to abnormal cardiac structure and function. Circulation. 2001;103(24):2973–2979. doi: 10.1161/01.cir.103.24.2973.
96. Shuey DL, Sadler TW, Lauder JM. Serotonin as a regulator of craniofacial morphogenesis: site specific malformations following exposure to serotonin uptake inhibitors. Teratology. 1992;46(4): 367–378. doi: 10.1002/tera.1420460407.
97. Sari Y, Zhou FC. Serotonin and its transporter on proliferation of fetal heart cells. Int J Dev Neurosci. 2003;21(8):417–424. doi: 10.1016/j.ijdevneu.2003.10.002.
98. Alwan S, Reefhuis J, Rasmussen SA, et al. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med. 2007;356(26):2684–2692. doi: 10.1056/nejmoa066584.
99. Louik C, Lin AE, Werler MM, et al. First trimester use of selective serotonin-reuptake inhibitors and the risk of birth defects. N Engl J Med. 2007;356(26):2675–2683. doi: 10.1056/nejmoa067407.
100. Berard A, Ramos E, Rey E, et al. First trimester exposure to paroxetine and risk of cardiac malformations in infants: the importance of dosage. Birth Defects Res B Dev Reprod Toxicol. 2007;80(1):18–27. doi: 10.1002/bdrb.20099.
101. Kallen BA, Olausson PO. Maternal use of selective serotonin re-uptake inhibitors in early pregnancy and infant congenital malformations. Birth Defects Res A Clin Mol Teratol. 2007;79(4): 301–308. doi: 10.1002/bdra.20327.
102. Einarson A, Pistelli A, DeSantis M, et al. Evaluation of the risk of congenital cardiovascular defects associated with use of paroxetine during pregnancy. Am J Psychiatry. 2008;165(6): 749–752. doi: 10.1176/appi.ajp.2007.07060879.
103. Diav-Citrin O, Shechtman S, Weinbaum D, et al. Paroxetine and fluoxetine in pregnancy: a prospective, multicentre, controlled, observational study. Br J Clin Pharmacol. 2008;66:695–705. doi: 10.1111/j.1365-2125.2008.03261.x.
104. Reefhuis J, Devine O, Friedman JM, et al. Specific SSRIs and birth defects: bayesian analysis to interpret new data in the context of previous reports. BMJ. 2015;350: h3190. doi: 10.1136/bmj.h3190.
105. Sadler TW. Selective serotonin reuptake inhibitors (SSRIs) and heart defects: potential mechanisms for the observed associations. Reprod Toxicol. 2011;32(4):484–489. doi: 10.1016/j.reprotox.2011.09.004.
106. Vahakangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol. 2009;158(3):665–678. doi: 10.1111/j.1476-5381.2009.00336.x.
107. Кукес В. Г., Сокова Е. А., Игнатьев И. В. и др. Гликопротеин P и здоровье плода. Проблемы репродукции. 2010;5:78–84. [Kukes VG, Sokova EA, Ignat’ev IV, et al. Glycoprotein P and fetal condition. Problemy reproduktsii. 2010;5:78–84. (In Rus).]
108. Atkinson DE, Brice-Bennett S, D’Souza SW. Antiepileptic medication during pregnancy: does fetal genotype affect outcome? Pediatr Res. 2007;62(2):120–127. doi: 10.1203/pdr.0b013e3180a02e50.
109. Lankas GR, Wise LD, Cartwright ME. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol. 1998;12(4):457–463. doi: 10.1016/s0890-6238(98)00027-6.
110. Smit JW, Huisman MT, van Tellingen O, et al. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest. 1999;104(10): 1441–1447. doi: 10.1172/jci7963.
111. Bliek BJ, van Schaik RH, van der Heiden I, et al. Maternal medication use, carriership of the ABCB1 3435C>T polymorphism and the risk of a child with cleft lip with or without cleft palate. Am J Med Genet A. 2009;149(10):2088–2092. doi: 10.1002/ajmg. a.33036.
112. Martinelli M, Carinci F, Morselli PG, et al. Study of ABCB1 multidrug resistance protein in a common orofacial malformation.Int J Immunopathol Pharmacol. 2011;24(2):1–5.
113. Wang C, Xie L, Zhou K, et al. Increased risk for congenital heart defects in children carrying the ABCB1 gene C3435T polymorphism and maternal periconceptional toxicants exposure. PLoS ONE. 2013;8(7): e68807. doi: 10.1371/journal.pone.0068807.
114. Wang C, Zhou K, Xie L, et al. Maternal medication use, fetal 3435 C>T polymorphism of the ABCB1 gene, and risk of isolated septal defects in a Han Chinese population. Pediatric Cardiology. 2014;35(7):1132–1141. doi: 10.1007/s00246-014-0906-6.
Рецензия
Для цитирования:
Решетько О.В., Луцевич К.А., Клименченко Н.И. Фармакологическая безопасность при беременности: принципы тератогенеза и тератогенность лекарственных средств. Педиатрическая фармакология. 2016;13(2):105-115. https://doi.org/10.15690/pf.v13i2.1551
For citation:
Reshet’ko O.V., Lutsevich K.A., Klimenchenko N.I. Pharmacological safety during pregnancy: the principles of teratogenesis and teratogenicity of drugs. Pediatric pharmacology. 2016;13(2):105-115. (In Russ.) https://doi.org/10.15690/pf.v13i2.1551