Preview

Pediatric pharmacology

Advanced search

Intestinal Microbiota in Premature Children — the Modern State of the Problem (Literature Analysis)

https://doi.org/10.15690/pf.v12i3.1354

Abstract

The problem of intestinal microbiota influencing the health of early aged children has become especially relevant over the past few years. On one hand, this is due to the significant worsening of the human environment ecology, on the other — due to the high prevalence of digestive disorders in children, especially premature ones. The introduction of modern high-informative molecular-genetic research methods (PCR-amplification with gene sequenation) made it possible to reveal the primary stage of human colonization by bacteria even at the stage of fetal ontogenesis and to thoroughly decode the microbiota structure in newborns and first-year babies. It is established, that the mothers microbiota has a direct effect on the quantity and quality of the child’s microbiota. The mother’s microbiota depends not only on her possessing inflammatory, but also metabolic diseases (obesity). There is also a direct correlation between the children’s microbiota and the wway they were born (microbiota is better in cases of natural birth), and these differences are prevalent after a number of months after birth. One of the main factors affecting microbiota after birth from the very first day is nutrition. Most studies earnestly confirm the role of breastfeeding in contributing to an optimal microbiocenosis in the child. Antibacterial therapy, being received by either the mother or the child has a negative effect on the colonization of the intestines by symbiont microbes. The negative impacts on the micro flora are especially significant for premature children especially those born with a very low and extremely low body mass. The ontogenesis of these children is most severed by malicious factors (infections followed by the necessity of a massive antibacterial therapy, hypoxia, surgical birth, forced artificial feeding) in connection with a general immaturity, including not yet fully-fledged body defense systems. Directive microbiota correction in premature children is an important condition for prevention and treatment of such severe diseases as sepsis necrotizing enterocolitis. For this reason, the usage of probiotics is considered as one of the promising practices of practical neonatology. The article contains an example of studying the effectiveness of probiotic therapy in premature babies with a combined perinatal pathology.

About the Authors

I. A. Belyaeva
Scientific Center of Children’s Health
Russian Federation
Moscow


E. P. Bombardirova
Scientific Center of Children’s Health
Russian Federation
Moscow


T. V. Turti
Scientific Center of Children’s Health; Pirogov National Research Medical University
Russian Federation
Moscow


M. D. Mitish
Scientific Center of Children’s Health
Russian Federation
Moscow


T. V. Potekhina
Scientific Center of Children’s Health
Russian Federation
Moscow


References

1. Dishaw L. J., Cannon J. P., Litman G. W., Parker W. Immune-directed support of rich microbial communities in the gut has ancient roots. Dev Comp Immunol. 2014; 47: 36–51.

2. Friedrich M. J. Genomes of microbes inhabiting the body offer clues to human health and disease. JAMA. 2013; 309: 1447–1449.

3. Pfeiffer J. K., Sonnenburg J. L. The intestinal microbiota and viral susceptibility. Front Microbiol. 2011; 2: 92.

4. Kuzniewicz M. W., Wi S., Qian Y., Walsh E. M., Armstrong M. A., Croen L. A. Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. J Pediatr. 2014; 164: 20–25.

5. Thompson A. L. Developmental origins of obesity: early feeding environments, infant growth, and the intestinal microbiome. Am J Hum Biol. 2012; 24: 350–360.

6. Vrieze A., Van Nood E., Holleman F., Salojarvi J., Kootte R. S., Bartelsman J. F., Dallinga-Thie G. M., Ackermans M. T., Serlie M. J., Oozeer R., Oozeer R., Derrien M., Druesne A., van Hylckama Vlieg J. E., Bloks V. W., Groen A. K., Heilig H. G., Zoetendal E. G., Stroes E. S.,

7. de Vos W. M., Hoekstra J. B., Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143: 913–916. e917.

8. Ahn J., Sinha R., Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013; 105: 1907–11.

9. Vaarala O. Is the origin of type 1 diabetes in the gut? Immunol Cell Biol. 2012; 90: 271–6.

10. Lucas A. Long-term programming effects of early nutrition — implications for the preterm infant. J Perinatol. 2005; 25 (Suppl. 2): S2–6.

11. Plagemann A., Harder T., Schellong K., Schulz S., Stupin J. H. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab. 2012; 26: 641–53.

12. Penders J., Thijs C., van den Brandt P. A. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut. 2007; 56: 661–7.

13. Young V. B. The intestinal microbiota in health and disease. Curr Opin Gastroenterol. 2012; 28: 63–9.

14. Mshvildadze M., Neu J. The infant intestinal microbiome: friend or foe? Early Hum Dev. 2010; 86 (Suppl. 1): 67–71.

15. Neu J., Douglas-Escobar M., Lopez M. Microbes and the developing gastrointestinal tract. Nutr Clin Pract. 2007; 22: 174–82.

16. Brooks B., Firek B. A., Miller C. S. et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome. 2014; 2: 1.

17. Cotten C. M., Taylor S., Stoll B. et al. NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009; 123: 58–66.

18. Penders J., Thijs C., Vink C. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118: 511–21.

19. Schwiertz A., Gruhl B., Lobnitz M., Michel P., Radke M., Blaut M. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res. 2003; 54: 393–9.

20. Mshvildadze M., Neu J., Mai V. Intestinal microbiota development in the premature neonate: establishment of a lasting commensal relationship? Nutr Rev. 2008; 66: 658–63.

21. Morowitz M. J., Poroyko V., Caplan M., Alverdy J., Liu D. C. Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis. Pediatrics. 2010; 125: 777–85.

22. Jimenez E., Marin M. L., Martin R., Odriozola J. M., Olivares M., Xaus J., Fernandez L., Rodriguez J. M. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008; 159: 187–193.

23. Ardissone A. N., de la Cruz D. M., Davis-Richardson A. G., Rechcigl K. T., Li N., Drew J. C., Murgas-Torrazza R., Sharma R., Hudak M. L., Triplett E. W., Neu J. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014; 9: e90784.

24. Moles L., Gomez M., Heilig H. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013; 8: e66986.

25. Martinez-Lopez D. G., Funderburg N. T., Cerissi A., Rifaie R., Aviles-Medina L., Llorens-Bonilla B. J., Sleasman J., Luciano A. A. Lipopolysaccharide and soluble CD14 in cord blood plasma are associated with prematurity and chorioamnionitis. Pediatr Res. 2014; 75: 67–74.

26. Uhlig H. H., Powrie F. The role of mucosal T lymphocytes in regulating intestinal inflammation. Springer Semin Immunopathol. 2005; 27: 167–180.

27. Chen Y., Chou K., Fuchs E. et al. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA. 2002; 99: 14338–14343.

28. Mackie R., Sghir A., Gaskins R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999; 69: 1035S–1045S.

29. Gronlund M. M., Lehtonen O. P., Eerola E., Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999; 28: 19–25.

30. Salminen S., Gibson G. R., McCartney A. L., Isolauri E. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004; 53: 1388–9.

31. David L. A., Maurice C. F., Carmody R. N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–63.

32. Huurre A., Kalliomaki M., Rautava S., Rinne M., Salminen S., Isolauri E. Mode of delivery — effects on gut microbiota and humoral immunity. Neonatology. 2008; 93: 236–40.

33. Azad M. B., Konya T., Maughan H. et al. CHILD Study Investigators. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013; 185: 385–94.

34. Sakata H., Yoshioka H., Fujita K. Development of the intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur J Pediatr. 1985; 144: 186–90.

35. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010; 107: 11971–11975.

36. Thavagnanam S., Fleming J., Bromley A., Shields M. D., Card well C. R. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008; 38: 629–633.

37. Sherman P. M., Cabana M., Gibson G. R. et al. Potential roles and clinical utility of prebiotics in newborns, infants, and children: proceedings from a global prebiotic summit meeting, New York City, June 27–28, 2008. J Pediatr. 2009; 155: S61–70.

38. Gewolb I. H., Schwalbe R. S., Taciak V. L., Harrison T. S., Panigrahi P. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal. 1999; 80: F167–73.

39. Hall M. A., Cole C. B., Smith S. L., Fuller R., Rolles C. J. Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child. 1990; 65: 185–8.

40. Westerbeek E. A., van den Berg A., Lafeber H. N., Knol J., Fetter W. P., van Elburg R. M. The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr. 2006; 25: 361–8.

41. Fouhy F., Guinane C. M., Hussey S. et al. High-throughput sequ encing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012; 56: 5811–20.

42. Jernberg C., Lofmark S., Edlund C., Jansson J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1: 56–66.

43. Madan J. C., Salari R. C., Saxena D. et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012; 97: F456–62.

44. Mai V., Torrazza R. M., Ukhanova M. et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS One. 2013; 8: e52876.

45. Вonnemaison E., Lanotte P., Cantagrel S., Thionois S., Quentin R., Chamboux C., Laugier J. Comparison of Fecal Flora following Administration of Two Antibiotic Protocols for Suspected Mater nofetal Infection. Biol Neonate. 2003; 84: 304–310.

46. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C. et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000; 30: 61–7.

47. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5: e177.

48. Balmer S. E., Wharton B. A. Diet and faecal flora in the newborn: breast milk and infant formula. Arch Dis Child. 1989; 64: 1672–7.

49. Bezirtzoglou E., Tsiotsias A., Welling G. W. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011; 17: 478–482.

50. Cabrera-Rubio R., Collado M. C., Laitinen K., Salminen S., Isolauri E., Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012; 96: 544–51.

51. Ramsay D. T., Kent J. C., Owens R. A., Hartmann P. E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004; 113: 361–7.

52. Hunt K. M., Foster J. A., Forney L. J. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011; 6: e21313.

53. Perez P. F., Dore J., Leclerc M. et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007; 119: e724–32.

54. Guaraldi F., Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol. 2012; 2: 94.

55. Martin R., Langa S., Reviriego C., Jiminez E., Marin M. L., Xaus J., Fernandez L., Rodriguez J. M. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003; 143: 754–758.

56. De Leoz M. L., Gaerlan S. C., Strum J. S., Dimapasoc L. M., Mirmiran M., Tancredi D. J., Smilowitz J. T., Kalanetra K. M., Mills D. A., German J. B., Lebrilla C. B., Underwood M. A. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res. 2012; 11: 4662–4672.

57. Neu J., Walker W. A. Necrotizing enterocolitis. N Engl J Med. 2011; 364: 255–64.

58. Бондаренко В. М. Обоснование и тактика назначения в медицинской практике различных форм пробиотических препаратов. Фарматека. 2012; 3: 1–11.

59. Adlerberth I., Wold A. E. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009; 98: 229–238.

60. Weng M., Walker W. A. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013; 4: 203–214.

61. Brown C. T., Sharon I., Thomas B. C., Castelle C. J., Morowitz M. J., Banfield J. F. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome. 2013; 1: 30.

62. La Rosa P. S., Warner B. B., Zhou Y., Weinstock G. M., Sodergren E., Hall-Moore C. M., Stevens H. J., Bennett W. E. Jr., Shaikh N., Linneman L. A., Hoffman J. A., Hamvas A., Deych E., Shands B. A., Shannon W. D., Tarr P. I. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci USA. 2014; 111: 12522–12527.

63. Diamond B., Huerta P. T., Tracey K. et al. It takes guts to grow a brain: increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays. 2011; 33: 588–591.

64. Diaz H. R., Wang S., Anuar F. et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011; 108: 3047–3052.

65. Isolauri E., Kirjavainen P. V., Salminen S. Probiotics: role in the treatment of intestinal infection and inflammation. Gat. 2002; 50 (3): 154–59.

66. Lin H. C., Su B. H., Chen A. C., Lin T. W., Tsai C. H., Yeh T. F. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2005; 115: 1–4.

67. Al Faleh K., Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014; 4: CD005496.

68. Szajewska H., Guandalini S., Morelli L., van Goudoever J. B., Walker A. Effect of Bifidobacterium animalis subsp lactis Supplementation in Preterm Infants: A Systematic Review of Randomized Controlled Trials. JPGN. 2010; 51: 203–209.

69. Беляева И. А., Митиш М. Д., Катосова Л. К. Эффективность использования пробиотиков у недоношенных детей. Русский медицинский журнал. 2009; 17 (15): 1000–1004.


Review

For citations:


Belyaeva I.A., Bombardirova E.P., Turti T.V., Mitish M.D., Potekhina T.V. Intestinal Microbiota in Premature Children — the Modern State of the Problem (Literature Analysis). Pediatric pharmacology. 2015;12(3):296-303. https://doi.org/10.15690/pf.v12i3.1354

Views: 2278


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)