Correlations Between Obesity and Autoimmune Diseases
https://doi.org/10.15690/pf.v22i5.2972
Abstract
Chronic subacute inflammation typical for obesity may underlie the development of autoimmune diseases. Increased adipokines (such as leptin and resistin) and proinflammatory cytokines secretion are crucial in pathogenesis. Chronic inflammation in obesity promotes accelerated pancreatic β-cells apoptosis, leads to demyelination and damage to neuronal axons, intestinal microbiome changes, and impaired synthesis of thyroid hormones. Altogether, it can result in development of such conditions as type 1 diabetes mellitus, disseminated sclerosis, inflammatory bowel diseases, and autoimmune thyroiditis. Timely management obesity may prevent autoimmune diseases development.
Keywords
About the Authors
Anatoly I. KhavkinRussian Federation
Anatoly I. Khavkin, MD, PhD, Professor
62, Bolshaya Serpukhovskaya Str., Moscow, 115093
Belgorod
Disclosure of interest:
Not declared.
Valeriya P. Novikova
Russian Federation
Valeriya P. Novikova, MD, PhD, Professor
Saint-Petersburg
Disclosure of interest:
Not declared.
Andrew V. Nalyotov
Russian Federation
Andrew V. Nalyotov, MD, PhD, Professor
Disclosure of interest:
Not declared.
Ludmila A. Podorova
Russian Federation
Ludmila A. Podorova, MD
Saint-Petersburg
Disclosure of interest:
Not declared.
Marina Yu. Komissarova
Russian Federation
Marina Yu. Komissarova, MD, PhD
Saint-Petersburg
Krasnogorsk
Disclosure of interest:
Not declared.
Dmitry I. Masyuta
Russian Federation
Dmitry I. Masyuta, MD, PhD
Disclosure of interest:
Not declared.
References
1. Raisanen L, Lommi S, Engberg E, et al. Central obesity in schoolaged children increases the likelihood of developing paediatric autoimmune diseases. Pediatr Obes. 2022;17(3):e12857. doi: https://doi.org/10.1111/ijpo.12857
2. Qiu P, Ishimoto T, Fu L, et al. The Gut Microbiota in Inflammatory Bowel Disease. Front Cell Infect Microbiol. 2022;12:733992. doi: https://doi.org/10.3389/fcimb.2022.733992
3. Komissarova MYu, Mirnaya AS, Evdokimova NV, et al. Gut microbiota in children with obesity: characteristics of composition and role in pathogenesis. Voprosy dietologii = Nutrition. 2024;14(2):50–59. (In Russ). doi: https://doi.org/10.20953/2224-5448-2024-2-50-59.
4. Dzhumagaziev AA, Bezrukova DA, Shilina NM, et al. Genetic and Epigenetic Risk Factors for the Development of Simple Obesity in Children: a Literature Review. Pediatricheskaya farmakologiya = Pediatric pharmacology. 2024;21(6):510–515. (In Russ). doi: https://doi.org/10.15690/pf.v21i6.2828.
5. Pushkaruk VV, Naletov AV. The main aspects of lifestyle changes in obese children living in conditions of prolonged military conflict. Vyatskii meditsinskii vestnik. 2023;(4):31–34. (In Russ). doi: https://doi.org/10.24412/2220-7880-2023-4-31-34.
6. Kosenkova TV, Novikova VP. Bronchial asthma and obesity in children. Mechanisns of interrelation. Medicine: theory and practice. 2019;4(1):62–83. (In Russ).
7. Novikova VP, Aleshina EI, Leonova IA, et al. Kliniko-immunologicheskie i metabolicheskie osobennosti detei s morbidnym ozhireniem. Voprosy detskoi dietologii = Pediatric Nutrition. 2017;15(1):60–61. (In Russ).
8. Jebeile H, Kelly AS, O’Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022;10(5):351–365. doi: https://doi.org/10.1016/S2213-8587(22)00047-X
9. Khavkin AI, Nalyotov AV, Shumilov PV, et al. Ultra-processed foods and gut microbiome. Voprosy detskoi dietologii = Pediatric Nutrition. 2024;22(5):79–86. (In Russ). doi: https://doi.org/10.20953/1727-5784-2024-5-79-86.
10. Baranov AA, Volynec GV, Vlasov NN, et al. Clinical Guidelines for the Diagnosis and Treatment of Metabolically Associated Fatty Liver Disease in Children (Non-Alcoholic Fatty Liver Disease). Pediatricheskaya farmakologiya = Pediatric pharmacology. 2025;22(2):147–163. (In Russ). doi: https://doi.org/10.15690/pf.v22i2.2884.
11. Lindberg L, Danielsson P, Persson M, et al. Association of childhood obesity with risk of early all-cause and cause-specific mortality: A Swedish prospective cohort study. PLoS Med. 2020;17(3):e1003078. doi: https://doi.org/10.1371/journal.pmed.1003078
12. Nalyotov AV, Pushkaruk VV. The state of intestinal microflora in obese children. Children’s medicine of the North-West. 2022;10(1):70–74. (In Russ).
13. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375–C391. doi: https://doi.org/10.1152/ajpcell.00379.2020.
14. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731– 752. doi: https://doi.org/10.1042/CS20200895
15. Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne). 2021;12:585887. doi: https://doi.org/10.3389/fendo.2021.585887
16. Singh S, Dulai PS, Zarrinpar A, et al. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017;14(2):110–121. doi: https://doi.org/10.1038/nrgastro.2016.181
17. Petrenko YV, Gerasimova KS, Novikova VP. Biological and pathophysiological role of adiponectin. Pediatr = Pediatrician (St. Petersburg). 2019;10(2):83–87. (In Russ). doi: https://doi.org/10.17816/PED10283-87.
18. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731– 752. doi: https://doi.org/10.1042/CS20200895
19. Ying W, Fu W, Lee YS, Olefsky JM. The role of macrophages in obesity-associated islet inflammation and beta-cell abnormalities. Nat Rev Endocrinol. 2020;16(2):81–90. doi: https://doi.org/10.1038/s41574-019-0286-3
20. Collier F, Chau C, Mansell T, et al. Innate immune activation and circulating inflammatory markers in preschool children. Front Immunol. 2022;12:830049. doi: https://doi.org/10.3389/fimmu.2021.830049
21. Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–1974. doi: https://doi.org/10.2337/dc15-1419
22. Ferrara-Cook C, Geyer SM, Evans-Molina C, et al. Type 1 diabetes TrialNet study group. Excess BMI accelerates islet autoimmunity in older children and adolescents. Diabetes Care. 2020;43(3):580–587. doi: https://doi.org/10.2337/dc19-1167
23. Inshaw JRJ, Sidore C, Cucca F, et al. Analysis of overlapping genetic association in type 1 and type 2 diabetes. Diabetologia. 2021;64(6):1342–1347. doi: https://doi.org/10.1007/s00125-021-05428-0
24. Ferrara CT, Geyer SM, Liu YF, et al. Type 1 Diabetes TrialNet Study G. Excess BMI in childhood: A modifiable risk factor for type 1 diabetes development. Diabetes Care. 2017;40(5):698–701. doi: https://doi.org/10.2337/dc16-2331
25. Pang TT, Chimen M, Goble E, et al. Inhibition of islet immunoreactivity by adiponectin is attenuated in human type 1 diabetes. J Clin Endocrinol Metab. 2013;98(3):E418–E428. doi: https://doi.org/10.1210/jc.2012-3516
26. Zucker I, Zloof Y, Bardugo A, et al. Obesity in late adolescence and incident type 1 diabetes in young adulthood. Diabetologia. 2022;65(9):1473–1482. doi: https://doi.org/10.1007/s00125-022-05722-5
27. Antvorskov JC, Aunsholt L, Buschard K, et al. Childhood body mass index in relation to subsequent risk of type 1 diabetes — A Danish cohort study. Pediatr Diabetes. 2018;19(2):265–270. doi: https://doi.org/10.1111/pedi.12568
28. Buryk MA, Dosch HM, Libman I, et al. Neuronal T-cell autoreactivity is amplified in overweight children with new-onset insulin-requiring diabetes. Diabetes Care. 2015;38(1):43–50. doi: https://doi.org/10.2337/dc14-1861
29. Cedillo M, Libman IM, Arena VC, et al. Obesity, islet cell autoimmunity, and cardiovascular risk factors in youth at onset of type 1 autoimmune diabetes. J Clin Endocrinol Metab. 2015;100(1):E82–E86. doi: https://doi.org/10.1210/jc.2014-2340
30. Marcus C, Danielsson P, Hagman E. Pediatric obesity-Longterm consequences and effect of weight loss. J Intern Med. 2022;292(6):870–891. doi: https://doi.org/10.1111/joim.13547
31. Bistrom M, Hultdin J, Andersen O, et al. Leptin levels are associated with multiple sclerosis risk. Mult Scler. 2021;27(1):19– 27. doi: https://doi.org/10.1177/1352458520905033
32. Marrodan M, Farez MF, Balbuena Aguirre ME, et al. Obesity and the risk of Multiple Sclerosis. The role of Leptin. Ann Clin Transl Neurol. 2021;8(2):406–424. doi: https://doi.org/10.1002/ acn3.51291
33. Kamalova AA, Khanafina MA, Garina GA. Clinical and Diagnostic Value of Inflammatory Bowel Diseases’ Serological Markers in Children (Literature Review). Pediatricheskaya farmakologiya = Pediatric pharmacology. 2023;20(4):309–317. (In Russ). doi: https://doi.org/10.15690/pf.v20i4.2605.
34. Khavkin AI, Nalyotov AV, Marchenko NA. Inflammatory Bowel Diseases in Children: Modern Achievements in Diagnostics and Therapy. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(6):7–15. (In Russ). doi: https://doi.org/10.22416/1382-4376-2023-33-6-7-15.
35. Yablokova EA, Dzhabarova AK, Lokhmatov MM, et al. Extraintestinal manifestations in infl ammatory bowel diseases in children, a modern view of the problem. Experimental and Clinical Gastroenterology. 2023;209(1):165–177. (In Russ). doi: https://doi.org/10.31146/1682-8658-ecg-209-1-165-177.
36. Bilski J, Mazur-Bialy A, Wojcik D, et al. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules. 2019;9(12):780. doi: https://doi.org/10.3390/biom9120780
37. Geng J, Ni Q, Sun W, et al. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother. 2022;147:112678. doi: https://doi.org/10.1016/j.biopha.2022
38. Massironi S, Viganò C, Palermo A, et al. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2023;8(6):579–590. doi: https://doi.org/10.1016/S2468-1253(23)00011-0
39. Yerushalmy-Feler A, Galai T, Moran-Lev H, et al. BMI in the lower and upper quartiles at diagnosis and at 1-year follow-up is significantly associated with higher risk of disease exacerbation in pediatric inflammatory bowel disease. Eur J Pediatr. 2021;180(1):21–29. doi: https://doi.org/10.1007/s00431-020-03697-2
40. R owan CR, McManus J, Boland K, et al. Visceral adiposity and inflammatory bowel disease. Int J Colorectal Dis. 2021;36(11):2305– 2319. doi: https://doi.org/10.1007/s00384-021-03968-w
41. Magro DO, Barreto MRL, Cazzo E, et al. Visceral fat is increased in individuals with Crohn’s disease: a comparative analysis with healthy controls. Arq Gastroenterol. 2018;55(2):142–147. doi: https://doi.org/10.1590/S0004-2803.201800000-25
42. Buning C, von Kraft C, Hermsdorf M, et al. Visceral adipose tissue in patients with Crohn’s disease correlates with disease activity, inflammatory markers, and outcome. Inflamm Bowel Dis. 2015;21(11):2590–2597. doi: https://doi.org/10.1097/MIB.0000000000000527
43. Cravo ML, Velho S, Torres J, et al. Lower skeletal muscle attenuation and high visceral fat index are associated with complicated disease in patients with Crohn’s disease: An exploratory study. Clin Nutr ESPEN. 2017;21:79–85. doi: https://doi.org/10.1016/j.clnesp.2017.04.005
44. Yadav DP, Kedia S, Madhusudhan KS, et al. Body composition in Crohn’s disease and ulcerative colitis: correlation with disease severity and duration. Can J Gastroenterol Hepatol. 2017;2017:1215035. doi: https://doi.org/10.1155/2017/1215035
45. Zhao Q, Liu Y, Tan L, et al. Adiponectin administration alleviates DSS-induced colonic inflammation in Caco-2 cells and mice. Inflamm Res. 2018;67(8):663–670. doi: https://doi.org/10.1007/s00011-018-1155-6
46. Ha CWY, Martin A, Sepich-Poore GD, et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell. 2020;183(3):666–683.e17. doi: https://doi.org/10.1016/j.cell.2020.09.009
47. Jensen CB, Angquist LH, Mendall MA, et al. Childhood body mass index and risk of inflammatory bowel disease in adulthood: a population-based cohort study. Am J Gastroenterol. 2018;113(5):694–701. doi: https://doi.org/10.1038/s41395-018-0031-x
48. Jiang K, Chen B, Lou D, et al. Systematic review and metaanalysis: association between obesity/overweight and surgical complications in IBD. J Colorectal Dis. 2022;37(7):1485–1496. doi: https://doi.org/10.1007/s00384-022-04190-y
49. Garcia-Garcia E, Vazquez-Lopez MA, Garcia-Fuentes E, et al. Thyroid Function and thyroid autoimmunity in relation to weight status and cardiovascular risk factors in children and adolescents: a population-based study. J Clin Res Pediatr Endocrinol. 2016;8(2):157–162. doi: https://doi.org/10.4274/jcrpe.2687
50. Wang B, Song R, He W, et al. Sex differences in the associations of obesity with hypothyroidism and thyroid autoimmunity among Chinese adults. Front Physiol. 2018;9:1397. doi: https://doi.org/10.3389/fphys.2018.01397
51. Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: An intriguing link. Indian J Endocrinol Metab. 2016;20(4):554–557. doi: https://doi.org/10.4103/2230-8210.183454
52. Wang X, Qiao Y, Yang L, et al. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus. 2017;26(13):1401–1406. doi: https://doi.org/10.1177/0961203317703497
53. Pinto-Sanchez MI, Blom JJ, Gibson PR, Armstrong D. Nutrition assessment and management in celiac disease. Gastroenterology. 2024;167(1):116–131.e1. doi: https://doi.org/10.1053/j.gastro.2024.02.049
54. De Giuseppe R, Bergomas F, Loperfido F, et al. Could celiac disease and overweight/obesity coexist in school-aged children and adolescents? A systematic review. Child Obes. 2024;20(1):48– 67. doi: https://doi.org/10.1089/chi.2022.0035
55. Agarwal A, Singh A, Mehtab W, et al. Patients with celiac disease are at high risk of developing metabolic syndrome and fatty liver. Intest Res. 2021;19(1):106–114. doi: https://doi.org/10.1007/978-3-031-63657-8_2
56. Novikova VP, Al Nawaiseh KZ, Zavyalova AN, et al. Psoriasis and obesity: Comorbidity or a single genetic code? Meditsinskiy sovet = Medical Council. 2025;(11):114–121. (In Russ). doi: https://doi.org/10.21518/ms2025-219.
57. Ufimtseva MA, Popov AA, Fedotova LV, et al. Psoriasis and metabolic syndrome: a review. Ozhirenie i metabolizm = Obesity and metabolism. 2020;17(4):369–374. (In Russ.) doi: https://doi.org/10.14341/omet12517.
58. Yamazaki F. Psoriasis: Comorbidities. J Dermatol. 2021; 48(6):732–740. doi: https://doi.org/10.1111/1346-8138.15840
59. Ko SH, Chi CC, Yeh ML, et al. Lifestyle changes for treating psoriasis Cochrane Database Syst Rev. 2019;7(7):CD011972. doi: https://doi.org/10.1002/14651858.CD011972.pub2
60. Korman NJ. Management of psoriasis as a systemic disease: what is the evidence? Br J Dermatol. 2020;182(4):840–848. doi: https://doi.org/10.1111/bjd.18245.
61. Ambarchyan ET, Namazova-Baranova LS, Murashkin NN, et al. Leptin and Epicardial Fat: New Markers of Psoriasis in Children? Prospective Cross-Sectional Study. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2022;19(3):242–249. (In Russ). doi: https://doi.org/10.15690/pf.v19i3.2481.
Review
For citations:
Khavkin A.I., Novikova V.P., Nalyotov A.V., Podorova L.A., Komissarova M.Yu., Masyuta D.I. Correlations Between Obesity and Autoimmune Diseases. Pediatric pharmacology. 2025;22(5):624-631. (In Russ.) https://doi.org/10.15690/pf.v22i5.2972



































