Preview

Педиатрическая фармакология

Расширенный поиск

Применение ингибиторов PD-1 и PD-L1 в детской гематологии: обзор литературы

https://doi.org/10.15690/pf.v21i3.2751

Аннотация

Открытие иммунных контрольных точек (ИКТ) стало знаковым событием в иммуноонкологии, улучшив понимание механизмов уклонения опухолевых клеток от иммунного надзора. На основании этого была разработана такая группа препаратов, как ингибиторы иммунных контрольных точек (иИКТ), действие которых обусловлено разрывом иммунологического синапса и распознаванием Т-клетками опухоли. В настоящее время иИКТ успешно используются в терапии ряда злокачественных новообразований, улучшив показатели безрецидивной и общей выживаемости. Однако определение роли данных препаратов в лечении детей с опухолями системы крови является предметом активных исследований. В данной статье представлен обзор литературы, посвященный актуальным аспектам применения ингибиторов PD-1 и PD-L1 в детской гематологии. Приведены их механизмы действия, эффективность и потенциальные осложнения терапии.

Об авторах

А. С. Падерина
НМИЦ гематологии
Россия

Валиев Тимур Теймуразович - д.м.н.

115478, Москва, Каширское шоссе, д. 24


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить



Т. Т. Валиев
НМИЦ онкологии им. Н.Н. Блохина
Россия

Валиев Тимур Теймуразович - доктор медицинских наук, заведующий детским отделением химиотерапии гемобластозов НИИ ДОиГ им. акад. РАМН Л.А. Дурнова

115478, Москва, Каширское ш., д. 24, тел.: +7 (905) 797-70-06


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить



Список литературы

1. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

2. Huang PW, Chang JW. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed J. 2019;42(5):299–306. https://doi.org/10.1016/j.bj.2019.09.002

3. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

4. Comin-Anduix B, Escuin-Ordinas H, Ibarrondo FJ. Tremelimumab: research and clinical development. Onco Targets Ther. 2016;9:1767– 1776. doi: https://doi.org/10.2147/OTT.S65802

5. Keam SJ. Tremelimumab: First Approval. Drugs. 2023;83(1):93–102. https://doi.org/10.1007/s40265-022-01827-8

6. Larkin J, Chiarion-Sileni V, Gonzalez R, et al.combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030

7. Bashey A, Medina B, Corringham S, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–1588. https://doi.org/10.1182/blood-2008-07-168468

8. Davids MS, Kim HT, Bachireddy P, et al. Leukemia and Lymphoma Society Blood Cancer Research Partnership. Ipilimumab for Patients with Relapse after Allogeneic Transplantation. N Engl J Med. 2016;375(2):143–153. https://doi.org/10.1056/NEJMoa1601202

9. Zeidan AM, Knaus HA, Robinson TM, et al. A Multi-center Phase I Trial of Ipilimumab in Patients with Myelodysplastic Syndromes following Hypomethylating Agent Failure. Clin Cancer Res. 2018;24(15):3519–3527. https://doi.org/10.1158/1078-0432.CCR-17-3763

10. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res, 2009;15(20):6446–6453. https://doi.org/10.1158/1078-0432

11. Khouri IF, Fernandez Curbelo I, Turturro F, et al. Ipilimumab plus Lenalidomide after Allogeneic and Autologous Stem Cell Transplantation for Patients with Lymphoid Malignancies. Clin Cancer Res. 2018;24(5):1011–1018. https://doi.org/10.1158/1078-0432.CCR-17-2777

12. Tuscano JM, Maverakis E, Groshen S, et al. A Phase I Study of the Combination of Rituximab and Ipilimumab in Patients with Relapsed/ Refractory B-Cell Lymphoma. Clin Cancer Res. 2019;25(23):7004–7013. https://doi.org/10.1158/1078-0432.CCR-19-0438

13. Armand P, Lesokhin A, Borrello I, et al. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/ refractory lymphoid Malignancies. Leukemia. 2021;35(3):777–786. https://doi.org/10.1038/s41375-020-0939-1

14. Garcia JS, Flamand Y, Penter L, et al. Ipilimumab plus decitabine for patients with MDS or AML in posttransplant or transplantnaïve settings. Blood. 2023;141(15):1884–1888. https://doi.org/10.1182/blood.2022017686

15. Diefenbach CS, Hong F, Ambinder RF, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020;7(9):e660–e670. https://doi.org/10.1016/S2352-3026(20)30221-0

16. Qin S, Xu L, Yi M, et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155. https://doi.org/10.1186/s12943-019-1091-2

17. Wu X, Gu Z, Chen Y, et al. Application of PD-1 Blockade in Cancer Immunotherapy.comput Struct Biotechnol J. 2019;17:661–674. https://doi.org/10.1016/j.csbj.2019.03.006

18. Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550. https://doi.org/10.3389/fimmu.2016.00550

19. Tinoco R, Carrette F, Barraza ML, et al. PSGL-1 Is an Immune Checkpoint Regulator That Promotes T Cell Exhaustion. Immunity. 2016;44:1190–1203. https://doi.org/10.1016/j.immuni.2016.04.015

20. Li F, Li C, Cai X, et al. The association between CD8+ tumorinfiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. eClinicalMedicine. 2021;41:101134. https://doi.org/10.1016/j.eclinm.2021.101134

21. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–3277. https://doi.org/10.1182/blood-2010-05-282780

22. Mottok A, Hung SS, Chavez EA, et al. Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma. Blood. 2019;134(10):802–813. https://doi.org/10.1182/blood.2019001126

23. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–881. https://doi.org/10.1182/blood-2015-10-673236

24. Song TL, Nairismägi M-L, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132(11):1146–1158. https://doi.org/10.1182/blood-2018-01-829424

25. Liao D, Wang M, Liao Y, et al. A Review of Efficacy and Safety of Checkpoint Inhibitor for the Treatment of Acute Myeloid Leukemia. Front Pharmacol. 2019;10:609. https://doi.org/10.3389/fphar.2019.00609

26. Zhao S, Zhang M, Zhang Y, et al. The prognostic value of programmed cell death ligand 1 expression in non-Hodgkin lymphoma: A meta-analysis. Cancer Biol Med. 2018;15(3):290. https://doi.org/10.20892/j.issn.2095-3941.2018.0047

27. Qiu L, Zheng H, Zhao X. The prognostic and clinicopathological significance of PD-L1 expression in patients with diffuse large B-cell lymphoma: A meta-analysis. BMC Cancer. 2019;19(1):273. https://doi.org/10.1186/s12885-019-5466-y

28. Garon EB, Rizvi NA, Hui R, et al. KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. https://doi.org/10.1056/NEJMoa1501824

29. Dilly-Feldis M, Aladjidi N, Refait JK, et al. Expression of PD-1/ PD-L1 in children’s classical Hodgkin lymphomas. Pediatr Blood Cancer. 2019;66(5):e27571. https://doi.org/10.1002/pbc.27571

30. Fisher KE, Ferguson LS, Coffey AM, et al. Programmed cell death ligand 1 expression in aggressive pediatric non-Hodgkin lymphomas: frequency, genetic mechanisms, and clinical significance. Haematologica. 2022;107(8):1880–1890. https://doi.org/10.3324/haematol.2021.280342

31. Majzner RG, Simon JS, Grosso JF, et al. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer. 2017;123(19):3807-3815. https://doi.org/10.1002/cncr.30724

32. Autio M, Leivonen S-K, Brück O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica. 2020;106(3):718–729. doi:https://doi.org/10.3324/haematol.2019.243626

33. Leivonen S-K, Pollari M, Brück O, et al. T-cell inflamed tumor microenvironment predicts favorable prognosis in primary testicular lymphoma. Haematologica. 2019;104(2):338–346. https://doi.org/10.3324/haematol.2018.200105

34. Wu H, Tang X, Kim HJ, et al. Expression of KLRG1 and CD127 defines distinct CD8+ subsets that differentially impact patient outcome in follicular lymphoma. J Immunother Cancer. 2021;9(7):e002662. https://doi.org/10.1136/jitc-2021-002662

35. Nygren L, Wasik AM, Baumgartner-Wennerholm S, et al. T-Cell Levels Are Prognostic in Mantle Cell Lymphoma. Clin Cancer Res. 2014;20(23):6096–6104. https://doi.org/10.1158/1078-0432.CCR-14-0889

36. Alonso-Álvarez S, Vidriales MB, Caballero MD, et al. The number of tumor infiltrating T-cell subsets in lymph nodes from patients with Hodgkin lymphoma is associated with the outcome after first line ABVD therapy. Leuk Lymphoma. 2017;58(5):1144–1152. https://doi.org/10.1080/10428194.2016.1239263

37. Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015;75(11):2139–2145. https://doi.org/10.1158/0008-5472.CAN-15-0255

38. Strickler JH, Hanks BA, Khasraw M. Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better? Clin Cancer Res. 2021;27(5):1236–1241. https://doi.org/10.1158/1078-0432.CCR-20-3054

39. Wienand K, Chapuy B, Stewart C, et al. Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065–4080. https://doi.org/10.1182/bloodadvances.2019001012

40. Chapuy B, Stewart C, Dunford AJ, et al. Genomic analyses of PMBL reveal new drivers and mechanisms of sensitivity to PD-1 blockade. Blood. 2019;134(26):2369–2382. https://doi.org/10.1182/blood.2019002067

41. Tian T, Li J, Xue T, et al. Microsatellite instability and its associations with the clinicopathologic characteristics of diffuse large B-cell lymphoma. Cancer Med. 2020;9(7):2330–2342. https://doi.org/10.1002/cam4.2870

42. El Hussein S, Daver N, Liu JL, et al. Microsatellite Instability Assessment by Immunohistochemistry in Acute Myeloid Leukemia: A Reappraisal and Review of the Literature. Clin Lymphoma Myeloma Leuk. 2022;22(6):e386–e391. https://doi.org/10.1016/j.clml.2021.12.004

43. Chen R, Zinzani PL, Fanale MA, et al. KEYNOTE-087. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–2132. https://doi.org/10.1200/JCO.2016.72.1316

44. Armand P, Rodig S, Melnichenko V, et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J Clin Oncol. 2019;37(34):3291–3299. https://doi.org/10.1200/JCO.19.01389

45. Geoerger B, Kang HJ, Yalon-Oren M, et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020;21(1):121–133. https://doi.org/10.1016/S1470-2045(19)30671-0

46. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319. https://doi.org/10.1056/247NEJMoa1411087

47. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J Clin Oncol. 2016;34(23):2698–2704. https://doi.org/10.1200/JCO.2015.65.9789

48. Park JA, Cheung NV. Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev. 2017;58:22–33. https://doi.org/10.1016/j.ctrv.2017.05.006

49. Harker-Murray P, Mauz-Körholz C, Leblanc T, et al. Nivolumab and brentuximab vedotin with or without bendamustine for R/R Hodgkin lymphoma in children, adolescents, and young adults. Blood. 2023;141(17):2075–2084. https://doi.org/10.1182/blood.2022017118

50. Shi Y. Landscape of the clinical development of China innovative anti-lung cancer drugs. Cancer Pathog Ther. 2022;1(1):67–75. doi:https://doi.org/10.1016/j.cpt.2022.10.003

51. Markham A, Keam SJ. Camrelizumab: First Global Approval. Drugs. 2019;79(12):1355–1361. https://doi.org/10.1007/s40265-019-01167-0

52. Tao R, Fan L, Song Y, et al. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: a multicenter, single-arm, phase 2 trial (ORIENT-4) Signal Transduct. Target Ther. 2021;6(1):365. https://doi.org/10.1038/s41392-021-00768-0

53. Que Y, Wang J, Sun F, et al. Safety and clinical efficacy of sintilimab (anti-PD-1) in pediatric patients with advanced or recurrent malignancies in a phase I study. Signal Transduct Target Ther. 2023;8(1):392. https://doi.org/10.1038/s41392-023-01636-9

54. Kim SJ, Lim JQ, Laurensia Y, et al. Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: An open-label phase 2 study. Blood. 2020;136(24):2754–2763. https://doi.org/10.1182/blood.2020007247

55. Herrera AF, Goy A, Mehta A, et al. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am J Hematol. 2020;95(1):18–27. https://doi.org/10.1002/ajh.25659

56. Geoerger B, Zwaan CM, Marshall LV, et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1-2 study. Lancet Oncol. 2020;21(1):134–144. https://doi.org/10.1016/S1470-2045(19)30693-X

57. Onesti CE, Frères P, Jerusalem G. Atypical patterns of response to immune checkpoint inhibitors: interpreting pseudoprogression and hyperprogression in decision making for patients’ treatment. J Thorac Dis. 2019;11(1):35–38. https://doi.org/10.21037/jtd.2018.12.47

58. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–2496. https://doi.org/10.1182/blood-2016-05-718528

59. Lee AJ, Kim KW, Cho YC, et al. Incidence of Immune-Mediated Pseudoprogression of Lymphoma Treated with Immune Checkpoint Inhibitors: Systematic Review and Meta-Analysis. J Clin Med. 2021;10(11):2257. https://doi.org/10.3390/jcm10112257


Рецензия

Для цитирования:


Падерина А.С., Валиев Т.Т. Применение ингибиторов PD-1 и PD-L1 в детской гематологии: обзор литературы. Педиатрическая фармакология. 2024;21(3):240-248. https://doi.org/10.15690/pf.v21i3.2751

For citation:


Paderina A.S., Valiev T.T. The administration of PD-1 and PD-L1 inhibitors in pediatric hematology: a literature review. Pediatric pharmacology. 2024;21(3):240-248. (In Russ.) https://doi.org/10.15690/pf.v21i3.2751

Просмотров: 351


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)