Preview

Pediatric pharmacology

Advanced search

Clinical Case of Rare Genetic Disorder (Proud Syndrome) in a Child

https://doi.org/10.15690/pf.v21i2.2745

Abstract

Background. Proud syndrome is rare inherited disease with X-linked inheritance associated with mutations in the homeobox gene ARX. Typical clinical signs of this syndrome are severe mental retardation, intractable epilepsy, agenesis (dysgenesis) of corpus callosum. Less common features are genital abnormalities, microcephaly, facial dysmorphia, and skeletal malformations. Clinical case description. The article describes the clinical findings of Proud syndrome in girl A., admitted to Children’s City Clinical Hospital No. 1 in Nizhny Novgorod. The girl was born without asphyxia at term through natural vaginal delivery after the first uneventful pregnancy. Body weight at birth was 2600 g. The genealogical history is burdened by the presence of epilepsy in girl’s father relatives. There were no deviations in psychomotor skills development before disease onset. Hemi-convulsive seizures (switching sides) have appeared at the age of 6 months. These attacks had status course and were resistant to anticonvulsant therapy. Neuroimaging has revealed agenesis of corpus callosum. Regression of psychomotor development, new behavioral disorders (stereotypes and auto-aggression), hyperexcitability, and sleep disorders were observed in dynamics. The diagnosis of Proud syndrome was confirmed by identification of probably pathogenic mutation in the ARX gene (c.1111C>T, p. Arg 371*64). The features of anticonvulsant management were demonstrated in the patient. Conclusion. This clinical case presents typical clinical picture of Proud syndrome. The disease is non-curable. Such patients should be administered with syndromic therapy: constant anticonvulsant therapy, correction of behavioral disorders (classes with specialist on mental defects), neurologist, epileptologist, psychiatrist observations. Parental examination is crucial ARX mutation search in order to determine the prognosis for further child-bearing (parents refused to perform genetic study at the time of article writing).

About the Authors

Anastasiia N. Vertianova
Privolzhsky Research Medical University
Russian Federation

student

Nizhny Novgorod


Disclosure of interest:

Not declared.



Anna V. Monakhova
Privolzhsky Research Medical University
Russian Federation

student

Nizhny Novgorod


Disclosure of interest:

Not declared.



Ulyana S. Suraeva
Privolzhsky Research Medical University
Russian Federation

student

Nizhny Novgorod


Disclosure of interest:

Not declared.



Olga M. Matiasova
Privolzhsky Research Medical University
Russian Federation

student

Nizhny Novgorod


Disclosure of interest:

Not declared.



Alla Yu. Shutkova
Privolzhsky Research Medical University; Children’s City Clinical Hospital №1
Russian Federation

MD, PhD

10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603005


Disclosure of interest:

Not declared.



Elena V. Tush
Privolzhsky Research Medical University; Children’s City Clinical Hospital №1
Russian Federation

 MD, PhD

Nizhny Novgorod


Disclosure of interest:

Not declared.



Elena E. Yacishina
Privolzhsky Research Medical University; Children’s City Clinical Hospital №1
Russian Federation

MD, PhD

Nizhny Novgorod


Disclosure of interest:

Not declared.



Marina A. Suslova
Privolzhsky Research Medical University; Children’s City Clinical Hospital №1
Russian Federation

MD, PhD

Nizhny Novgorod


Disclosure of interest:

Not declared.



Olga V. Khaletskaya
Privolzhsky Research Medical University; Children’s City Clinical Hospital №1
Russian Federation

MD, PhD, Professor

Nizhny Novgorod


Disclosure of interest:

Not declared.



References

1. Pânzaru M-C, Popa S, Lupu A, et al. Genetic heterogeneity in corpus callosum agenesis. Front Genet. 2022;13:958570. doi: https://doi.org/10.3389/fgene.2022.958570

2. Devi R, Chaurasia S, Priyadarshi M, et al. Proud Syndrome: A Rare Cause of Corpus Callosum Agenesis. Cureus. 2023;15(6):e40671. doi: https://doi.org/10.7759/cureus.40671

3. Proud VK, Levine C, Carpenter NJ. New X-linked syndrome with seizures, acquired micrencephaly, and agenesis of the corpus callosum. Am J Med Genet. 1992;43(1-2):458–466. doi: https://doi.org/10.1002/ajmg.1320430169

4. Ivanova IV, Mukhin KYu, Pylaeva OA, et al. Mutations in the ARX gene: clinical, electroencephalographic and neuroimaging features in 3 patients. Russian Journal of Child Neurology. 2017;12(3):58– 67. (In Russ). doi: https://doi.org/10.17650/2073-8803-2017-12-3-58-67

5. Ruggieri M, Pavone P, Scapagnini G, et al. The aristaless (Arx) gene: one gene for many “interneuronopathies”. Front Biosci (Elite Ed). 2010;2(2):701–710. doi: https://doi.org/10.2741/e130. PMID: 20036914

6. Strømme P, Mangelsdorf ME, Shaw MA, et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet. 2002;30(4):441–445. doi: https://doi.org/10.1038/ng862

7. Strømme P, Mangelsdorf ME, Scheffer IE, Gécz J. Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless-related homeobox gene, ARX. Brain Dev. 2002;24(5):266–268. doi: https://doi.org/10.1016/s0387-7604(02)00079-7

8. Poeta L, Malacarne M, Padula A, et al. Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability. Int J Mol Sci. 2022;23(6):3084. doi: https://doi.org/10.3390/ijms23063084

9. Marsh ED, Nasrallah MP, Walsh C, et al. Developmental interneuron subtype deficits after targeted loss of Arx. BMC Neurosci. 2016;17(1):35. doi: https://doi.org/10.1186/s12868-016-0265-8 10. Lim Y, Cho IT, Golden JA, Cho G. Generation of FLAG-tagged Arx knock-in mouse model. Genesis. 2022;60(6-7):e23479. doi: https://doi.org/10.1002/dvg.23479

10. Friocourt G, John G. Parnavelas GJ. Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci. 2010;4:4. doi: https://doi.org/10.3389/fncel.2010.00004

11. Joseph DJ, Von Deimling M, Hasegawa Y, et al. Postnatal Arx transcriptional activity regulates functional properties of PV interneurons. iScience. 2020;24(1)101999. doi: https://doi.org/10.1016/j.isci.2020.101999

12. Mustafa MI, Murshed NS, Abdelmoneim AH, Makhawi AM. Extensive In Silico Analysis of the Functional and Structural Consequences of SNPs in Human ARX Gene associated with EIEE1. Inform Med Unlocked. 2020;21:100447. doi: https://doi.org/10.1016/j.imu.2020.100447

13. Guzeva VI. Epilepsiya i neepilepticheskie paroksizmal’nye sostoyaniya u detei. Moscow: OOO “Meditsinskoe informatsionnoe agentstvo”; 2007. 568 p. (In Russ).

14. Marsh E, Fulp C, Gomez E, et al. Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain. 2009;132(Pt 6):1563– 1576. doi: https://doi.org/10.1093/brain/awp107

15. National Library of Medicine. National Center for Biotechnology Information. ClinVar. Database. Search for ARX. Available online: https://www.ncbi.nlm.nih.gov/clinvar/?term=ARX%5Bgene%5D&redir=gene. Accessed on April 15, 2024.

16. Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 2004;23(2):147–159. doi: https://doi.org/10.1002/humu.10310

17. Baranov VS, Kuznetsova TV, Kashcheeva TK, Ivashchenko TE. Prenatal’naya diagnostika nasledstvennykh boleznei. Sostoyanie i perspektivy. 2nd edn, upd. and rev. St. Petersburg: EkhoVektor; 2017. 471 p. (In Russ).

18. Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–521. doi: https://doi.org/10.1111/epi.13709

19. Bayat A, Bayat M, Rubboli G, Møller RS. Epilepsy Syndromes in the First Year of Life and Usefulness of Genetic Testing for Precision Therapy. Genes (Basel). 2021;12(7):1051. doi: https://doi.org/10.3390/genes12071051

20. Wong BKY, Sutton VR. Aicardi syndrome, an unsolved mystery: Review of diagnostic features, previous attempts, and future opportunities for genetic examination. Am J Med Genet C Semin Med Genet. 2018;178(4):423–431. doi: https://doi.org/10.1002/ajmg.c.31658

21. Katyayan A, Diaz-Medina G. Epilepsy: Epileptic Syndromes and Treatment. Neurol Clin. 2021;39(3):779–795. doi: https://doi.org/10.1016/j.ncl.2021.04.002

22. Latzer IT, Blau N, Ferreira CR, Pearl PL. Clinical and biochemical footprints of inherited metabolic diseases. XV. Epilepsies. Mol GenetMetab. 2023;140(3):107690. doi: https://doi.org/10.1016/j.ymgme.2023.107690

23. Mikhailova SV, Zakharova EYu, Petrukhin AS. Neirometabolicheskie zabolevaniya u detei i podrostkov: difdiagnostika i podkhody k lecheniyu. 2nd edn, upd. and rev. Moscow: Litterra; 2019. 368 p. (In Russ).

24. Shevchenko AI. The phenomenon of X chromosome inactivation and human diseases // Genes & Cells. 2016;11(2):61–69. (In Russ). doi: https://doi.org/10.23868/gc120579

25. Renteria-Vazquez T, Brown WS, Kang C, et al. Social Inferences in Agenesis of the Corpus Callosum and Autism: Semantic Analysis and Topic Modeling. J Autism Dev Disord. 2022;52(2):569–583. doi: https://doi.org/10.1007/s10803-021-04957-2

26. Unterberger I, Bauer R, Walser G, Bauer G. Corpus callosum and epilepsies. Seizure. 2016;37:55–60. doi: https://doi.org/10.1016/j.seizure.2016.02.012

27. Jańczewska I, Preis-Orlikowska J, Domżalska-Popadiuk I, et al. Children with corpus callosum anomalies: clinical characteristics and developmental outcomes. Neurol Neurochir Pol. 2023;57(3):269– 281. doi: https://doi.org/10.5603/PJNNS.a2023.0026


Review

For citations:


Vertianova A.N., Monakhova A.V., Suraeva U.S., Matiasova O.M., Shutkova A.Yu., Tush E.V., Yacishina E.E., Suslova M.A., Khaletskaya O.V. Clinical Case of Rare Genetic Disorder (Proud Syndrome) in a Child. Pediatric pharmacology. 2024;21(2):131-141. (In Russ.) https://doi.org/10.15690/pf.v21i2.2745

Views: 486


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)