Preview

Педиатрическая фармакология

Расширенный поиск

Наследственные синдромы в детской онкогематологии

https://doi.org/10.15690/pf.v20i6.2665

Аннотация

Онкогематологические заболевания занимают первое место в структуре злокачественных новообразований детского возраста. Соматические мутации в клетках опухолевых клонов хорошо изучены, включены в современные классификации, используются для стратификации больных на прогностические группы риска и выбора программы терапии. В то же время описано более 50 наследственных синдромов, ассоциированных с развитием гемобластозов. Часть из них (синдром Дауна, синдром Клайнфельтера, микроделеционные синдромы и др.) обусловлены хромосомной патологией, для других описаны альтерации одного или нескольких генов с различным типом наследования и возрастом манифестации онкогематологических заболеваний. Гены предрасположенности к онкогематологическим заболеваниям участвуют в процессах репарации ДНК, регуляции клеточного цикла, иммунного ответа и работы костного мозга. В данной статье приведены актуальные данные о генетических синдромах, ассоциированных с развитием гемобластозов с описанием собственных клинических наблюдений

Об авторах

В. М. Козлова
НМИЦ онкологии им. Н.Н. Блохина
Россия

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Е. Е. Зеленова
НМИЦ онкологии им. Н.Н. Блохина; Институт молекулярной биологии им. В.А. Энгельгардта
Россия

Зеленова Екатерина Евгеньевна, врач-генетик 

115478, Москва, Каширское шоссе, 23


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Т. Т. Валиев
НМИЦ онкологии им. Н.Н. Блохина; Первый МГМУ им. И.М. Сеченова (Сеченовский Университет)
Россия

Валиев Тимур Теймуразович, д.м.н.

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



В. В. Семенова
НМИЦ онкологии им. Н.Н. Блохина; Институт молекулярной биологии им. В.А. Энгельгардта
Россия

Семенова Вера Владимировна

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Т. В. Наседкина
НМИЦ онкологии им. Н.Н. Блохина; Институт молекулярной биологии им. В.А. Энгельгардта
Россия

Наседкина Татьяна Васильевна, д.б.н.

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



С. Н. Михайлова
НМИЦ онкологии им. Н.Н. Блохина
Россия

Михайлова Светлана Николаевна, к.м.н.

Москва


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Список литературы

1. Rio-Machin A, Vulliamy T, Hug N, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11(1):1044. doi: https://doi.org/10.1038/s41467-020-14829-5

2. Douglas SPM, Lahtinen AK, Koski JR, et al. Enrichment of cancer-predisposing germline variants in adult and pediatric patients with acute lymphoblastic leukemia. Sci Rep. 2022;12(1):10670. doi: https://doi.org/10.1038/s41598-022-14364-x

3. Kaseb H, Rayi A, Hozayen S. Chromosome Instability Syndromes. 2022 Sep 19. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

4. Валиев Т.Т., Ковригина А.М., Ключагина Ю.И., Сендерович А.И. Опыт цитогенетических исследований при неходжкинских лимфомах у детей // Онкопедиатрия. — 2016. — Т. 3. — № 2. — С. 125–132. — doi: https://doi.org/10.15690/onco.v3i2.1547

5. Sahoo SS, Kozyra EJ, Wlodarski MW. Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol. 2020;33(3):101197. doi: https://doi.org/10.1016/j.beha.2020.101197

6. Swaminathan M, Bannon SA, Routbort M, et al. Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019;5(1):a003210. doi: https://doi.org/10.1101/mcs.a003210

7. Duployez N, Goursaud L, Fenwarth L, et al. Familial myeloid malignancies with germline TET2 mutation. Leukemia. 2020;34(5):1450–1453. doi: https://doi.org/10.1038/s41375-019-0675-6

8. Churchman ML, Qian M, Te Kronnie G, et al. Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell. 2018;33(5):937–948.e8. doi: https://doi.org/10.1016/j.ccell.2018.03.021

9. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol. 2022;97(9):1236–1256. doi: https://doi.org/10.1002/ajh.26642

10. Kantarjian HM, Hughes TP, Larson RA, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021;35(2):440–453. doi: https://doi.org/10.1038/s41375-020-01111-2

11. Острые миелоидные лейкозы: клинические рекомендации. — 2020. — 95 с. Доступно по: https://oncology-association.ru/wp-content/uploads/2020/09/ostrye_mieloidnye_lejkozy.pdf. Ссылка активна на 08.12.2023.

12. McDonald-McGinn DM, Reilly A, Wallgren-Pettersson C, et al. Malignancy in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Am J Med Genet A. 2006;140(8):906–909. doi: https://doi.org/10.1002/ajmg.a.31199

13. Шестакова В.В. Клинический случай острого бифенотипического лейкоза у ребенка с синдромом Вильямса (Williams syndrome) // Российский журнал детской гематологии и онкологии. — 2015. — Т. 2. — № 2. — С. 89–92. — doi: https://doi.org/10.17650/2311-1267-2015-2-2-89-92

14. J rviaho T, Zachariadis V, Tesi B, et al. Microdeletion of 7p12.1p13, including IKZF1, causes intellectual impairment, overgrowth, and susceptibility to leukaemia. Br J Haematol. 2019;185(2):354–357. doi: https://doi.org/10.1111/bjh.15494

15. Vaisvilas M, Dirse V, Aleksiuniene B, et al. Acute Pre-B Lymphoblastic Leukemia and Congenital Anomalies in a Child with a de Novo 22q11.1q11.22 Duplication. Balkan J Med Genet. 2018;21(1):87–91. doi: https://doi.org/10.2478/bjmg-2018-0002

16. Kosmidou A, Tragiannidis A, Gavriilaki E. Myeloid Leukemia of Down Syndrome. Cancers (Basel). 2023;15(13):3265. doi: https://doi.org/10.3390/cancers15133265

17. Brown AL, de Smith AJ, Gant VU, et al. Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood. 2019;134(15):1227–1237. doi: https://doi.org/10.1182/blood.2018890764

18. Bchir M, Ayed W, Neji HB, et al. Leukemia in Patients with Klinefelter Syndrome: A Report of Two Cases. Indian J Hematol Blood Transfus. 2016;32(Suppl 1):66–68. doi: https://doi.org/10.1007/s12288-015-0590-6

19. Ji J, Z ller B, Sundquist J, Sundquist K. Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: A national cohort study. Int J Cancer. 2016;139(4):754–758. doi: https://doi.org/10.1002/ijc.30126

20. Siddiqui N, Ali Baig MF, Khan BA. A case report of acute myelogenous leukemia with Turner Syndrome. J Pak Med Assoc. 2017;67(9):1438–1440.

21. Seghezzi L, Maserati E, Minelli A, et al. Constitutional trisomy 8 as first mutation in multistep carcinogenesis: clinical, cytogenetic, and molecular data on three cases. Genes Chromosomes Cancer. 1996;17(2):94–101. doi: https://doi.org/10.1002/(SICI)1098-2264(199610)17:2<94::AID-GCC4>3.0.CO;2-W

22. Bencharef H, Lamchahab M, Dassouli D, et al. Xeroderma pigmentosum and acute myeloid leukemia: a case report. J Med Case Rep. 2021;15(1):437. doi: https://doi.org/10.1186/s13256-021-02969-1

23. Janjetovic S, Bacher U, Haalck T, et al. Acute megakaryoblastic leukemia in a patient with xeroderma pigmentosum: discussion of pathophysiological, prognostic, and toxicological aspects. Acta Haematol. 2013;129(2):121–125. doi: https://doi.org/10.1159/000342897

24. Zghal M, Fazaa B, Abdelhak S, Mokni M. Xeroderma pigmentosum. Ann Dermatol Venereol. 2018;145(11):706–722. doi: https://doi.org/10.1016/j.annder.2018.09.004

25. Trimbath JD, Petersen GM, Erdman SH, et al. Caf -aulait spots and early onset colorectal neoplasia: a variant of HNPCC? Fam Cancer. 2001;1(2):103–108. doi: https://doi.org/10.1023/A:1013881832014

26. Ricciardone MD, Ozcelik T, Cevher B, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res. 1999;59(2):290–293.

27. Baas A, Gabbett M, Rimac M, et al. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome. Eur J Hum Genet. 2013;21(1):55–61. doi: https://doi.org/10.1038/ejhg.2012.117

28. Whiteside D, McLeod R, Graham G, et al. A homozygous germline mutation in the human MSH2 gene predisposes to hematological malignancy and multiple cafe-au-lait spots. Cancer Res. 2002;62:359–362. doi: https://doi.org/10.1038/ejhg.2012.117

29. Bougeard G, Charbonnier F, Moerman A, et al. Early-onset brain tumor and lymphoma in MSH2-deficient children. Am J Hum Genet. 2003;72(1):213–216. doi: https://doi.org/10.1086/345297

30. Hegde MR, Chong B, Blazo ME, et al. A homozygous mutation in MSH6 causes Turcot syndrome. Clin Cancer Res. 2005;11(13):4689–4693. doi: https://doi.org/10.1158/1078-0432.CCR-04-2025

31. Poley JW, Wagner A, Hoogmans MM, et al. Biallelic germline mutations of mismatch-repair genes: a possible cause for multiple pediatric malignancies. Cancer. 2007;109(11):2349–2356. doi: https://doi.org/10.1002/cncr.22697

32. Tiao G, Improgo MR, Kasar S, et al. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia. 2017;31(10):2244–2247. doi: https://doi.org/10.1038/leu.2017.201

33. Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep. 2022;17(4):94–104. doi: https://doi.org/10.1007/s11899-022-00663-7

34. Yuille MR, Condie A, Hudson CD, et al. ATM mutations are rare in familial chronic lymphocytic leukemia. Blood. 2002;100(2):603–609. doi: https://doi.org/10.1182/blood.v100.2.603

35. Palles C, West HD, Chew E, et al. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am J Hum Genet. 2022;109(5):953–960. doi: https://doi.org/10.1016/j.ajhg.2022.03.018

36. Wagner JE, Tolar J, Levran O, et al. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia and Fanconi anemia. Blood. 2004;103(8):3226–3229. doi: https://doi.org/10.1182/blood-2003-09-3138

37. Dhanraj S, Matveev A, Li H, et al. Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. Blood. 2017;129(11):1557–1562. doi: https://doi.org/10.1182/blood-2016-08-735431

38. Kawashima N, Oyarbide U, Cipolli M, et al. Shwachman-Diamond syndromes: clinical, genetic, and biochemical insights from the rare variants. Haematologica. 2023;108(10):2594–2605. doi: https://doi.org/10.3324/haematol.2023.282949

39. Farooqui SM, Ward R, Aziz M. Shwachman-Diamond Syndrome. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

40. Carapito R, Konantz M, Paillard C, et al. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with ShwachmanDiamond-like features. J Clin Invest. 2017;127(11):4090–4103. doi: https://doi.org/10.1172/JCI92876

41. Vlachos A, Rosenberg PS, Atsidaftos E, et al. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119(16):3815–3819. doi: https://doi.org/10.1182/blood-2011-08-375972

42. Ramos H, Aly MM, Balasubramanian SK. Late Presentation of Dyskeratosis Congenita: Germline Predisposition to Adult-Onset Secondary Acute Myeloid Leukemia. Hematol Rep. 2022;14(4):294–299. doi: https://doi.org/10.3390/hematolrep14040042

43. Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–1017. doi: https://doi.org/10.1038/ng.913

44. Holme H, Hossain U, Kirwan M, et al. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukaemia. Br J Haematol. 2012;158(2):242–248. doi: https://doi.org/10.1111/j.1365-2141.2012.09136.x

45. Pasquet M, Bellanne-Chantelot C, Tavitian S, et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood. 2013;121(5):822–829. doi: https://doi.org/10.1182/blood-2012-08-447367

46. Gao J, Gentzler RD, Timms AE, et al. Heritable GATA2 mutations associated with familial AML-MDS: a case report and review of literature. J Hematol Oncol. 2014;7:36. doi: https://doi.org/10.1186/1756-8722-7-36

47. Rossini J, Mercorella B, Townshend S, et al. Familial platelet disorders with a predisposition to acute myelogenous leukaemia: a RUNX1 update. Hered Cancer Clin Pract. 2012;10(Suppl 2):A64. doi: https://doi.org/10.1186/1897-4287-10-S2-A64

48. Preudhomme C, Renneville A, Bourdon V, et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood. 2009;113(22):5583–5587. doi: https://doi.org/10.1182/blood-2008-07-168260

49. Zhang MY, Churpek JE, Keel SB, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47(2):180–185. doi: https://doi.org/10.1038/ng.3177

50. Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47(5):535–538. doi: https://doi.org/10.1038/ng.3253

51. Chen DH, Below JE, Shimamura A, et al. Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L. Am J Hum Genet. 2016;98(6):1146–1158. doi: https://doi.org/10.1016/j.ajhg.2016.04.009

52. Germeshausen M, Grudzien M, Zeidler C, et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood. 2008;111(10):4954–4957. doi: https://doi.org/10.1182/blood-2007-11-120667

53. Lopes BA, Barbosa TC, Souza BKS, et al. IKZF1 Gene in Childhood B-cell Precursor Acute Lymphoblastic Leukemia: Interplay between Genetic Susceptibility and Somatic Abnormalities. Cancer Prev Res (Phila). 2017;10(12):738–744. doi: https://doi.org/10.1158/1940-6207.CAPR-17-0121

54. Ben-Omran TI, Cerosaletti K, Concannon P, et al. A patient with mutations in DNA ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet. 2005;137A(3):283–287. doi: https://doi.org/10.1002/ajmg.a.30869

55. Booth C, Gilmour KC, Veys P, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62. doi: https://doi.org/10.1182/blood-2010-06-284935

56. Ravell JC, Chauvin SD, He T, Lenardo M. An Update on XMEN Disease. J Clin Immunol. 2020;40(5):671–681. doi: https://doi.org/10.1007/s10875-020-00790-x

57. Ravell JC, Matsuda-Lennikov M, Chauvin SD, et al. Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease. J Clin Invest. 2020;130(1):507–522. doi: https://doi.org/10.1172/JCI131116

58. Malik MA, Masab M. Wiskott-Aldrich Syndrome. 2023 Jun 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

59. Yoshimi A, Kamachi Y, Imai K, et al. Wiskott-Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatr Blood Cancer. 2012;60(5):836–841. doi: https://doi.org/10.1002/pbc.24359

60. Sun X, Luo C, Tang R, et al. Sinonasal diffuse large B-cell lymphoma in a patient with Wiskott-Aldrich syndrome: A case report and literature review. Front Immunol. 2023;13:1062261. doi: https://doi.org/10.3389/fimmu.2022.1062261

61. Du S, Scuderi R, Malicki DM, et al. Hodgkin’s and non-Hodgkin’s lymphomas occurring in two brothers with Wiskott-Aldrich syndrome and review of the literature. Pediatr Dev Pathol. 2011;14(1):64–70. doi: https://doi.org/10.2350/10-01-0787-CR.1

62. Senthil S, Thrasher AJ, Gilmour KC, et al. Wiskott Aldrich Syndrome-2 Caused by Novel Wiskott Aldrich Syndrome ProteinInteracting Protein (WIP) Deficiency Is Associated with Juvenile Myelomonocytic Leukaemia — a Case Report. J Clin Immunol. 2023;43(1):82–84. doi: https://doi.org/10.1007/s10875-022-01367-6

63. Taskinen M, Ranki A, Pukkala E, et al. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet. 2008;146A(18):2370–2375. doi: https://doi.org/10.1002/ajmg.a.32478

64. Klemetti P, Valta H, Kostjukovits S, et al. Cartilage-hair hypoplasia with normal height in childhood — 4 patients with a unique genotype. Clin Genet. 2017;92(2):204-207. doi: https://doi.org/10.1111/cge.12969

65. Yang L, Liu H, Zhao J, et al. Mutations of perforin gene in Chinese patients with acute lymphoblastic leukemia. Leuk Res. 2011;35(2):196–199. doi: https://doi.org/10.1016/j.leukres.2010.06.016

66. Churpek JE, Smith-Simmer K. DDX41-Associated Familial Myelodysplastic Syndrome and Acute Myeloid Leukemia. 2021 Oct 28. In: GeneReviews® [Internet]. Adam MP, Mirzaa GM, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2023.

67. Clark RD, Hutter JJ Jr. Familial neurofibromatosis and juvenile chronic myelogenous leukemia. Hum Genet. 1982;60(3):230–232. doi: https://doi.org/10.1007/BF00303009

68. Coffin CM, Cassity J, Viskochil D, et al. Non-neurogenic sarcomas in four children and young adults with neurofibromatosis type 1. Am J Med Genet. 2004;127A(1):40–43. doi: https://doi.org/10.1002/ajmg.a.20651

69. Choong K, Freedman MH, Chitayat D, et al. Juvenile myelomonocytic leukemia and Noonan syndrome. J Pediatr Hematol Oncol. 1999;21(6):523–527.

70. Villani A, Greer MC, Kalish JM, et al. Recommendations for Cancer Surveillance in Individuals with RASopathies and other rare genetic conditions with increased cancer risk. Clin Cancer Res. 2017;23(12):e83–e90. doi: https://doi.org/10.1158/1078-0432.CCR-17-0631

71. Niemeyer CM, Kang MW, Shin DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genet. 2010;42(9):794–800. doi: https://doi.org/10.1038/ng.641

72. Hyde RK, Liu PP. Germline PAX5 mutations and B cell leukemia. Nat Genet. 2013;45(10):1104–1105. doi: https://doi.org/10.1038/ng.2778

73. Duployez N, Jamrog LA, Fregona V, et al. Germline PAX5 mutation predisposes to familial B-cell precursor acute lymphoblastic leukemia. Blood. 2021;137(10):1424–1428. doi: https://doi.org/10.1182/blood.2020005756

74. Zhao X, Qian M, Goodings C, et al. Molecular Mechanisms of ARID5B-Mediated Genetic Susceptibility to Acute Lymphoblastic Leukemia. J Natl Cancer Inst. 2022;114(9):1287–1295. doi: https://doi.org/10.1093/jnci/djac101

75. Varon R, Muuer A, Wagner K, et al. Nijmegen breakage syndrome (NBS) due to maternal isodisomy of chromosome 8. Am J Med Genet A. 2007;143(A):92–94. doi: https://doi.org/10.1002/ajmg.a.31540

76. Waltes R, Kalb R, Gatei M, et al. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet. 2009;84(5):605–616. doi: https://doi.org/10.1016/j.ajhg.2009.04.010

77. Martin CA, Sarlos K, Logan CV, et al. Mutations in TOP3A cause a Bloom syndrome-like disorder. Am J Hum Genet. 2018;103(2):221–231. doi: https://doi.org/10.1016/j.ajhg.2018.07.001

78. Ansar S, Malcolmson J, Farncombe KM, et al. Clinical implementation of genetic testing in adults for hereditary hematologic malignancy syndromes. Genet Med. 2022;24(11):2367–2379. doi: https://doi.org/10.1016/j.gim.2022.08.010


Рецензия

Для цитирования:


Козлова В.М., Зеленова Е.Е., Валиев Т.Т., Семенова В.В., Наседкина Т.В., Михайлова С.Н. Наследственные синдромы в детской онкогематологии. Педиатрическая фармакология. 2023;20(6):557–573. https://doi.org/10.15690/pf.v20i6.2665

For citation:


Kozlova V.M., Zelenova E.E., Valiev T.T., Semenova V.V., Nasedkina T.N., Mikhailova S.N. Hereditary syndromes in pediatric hematooncology. Pediatric pharmacology. 2023;20(6):557–573. (In Russ.) https://doi.org/10.15690/pf.v20i6.2665

Просмотров: 341


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)