Preview

Педиатрическая фармакология

Расширенный поиск

Предикторы когнитивных нарушений и возможности их профилактики у недоношенных детей

https://doi.org/10.15690/pf.v17i4.2164

Полный текст:

Аннотация

В статье обобщены материалы современных публикаций, посвященных когнитивному развитию недоношенных детей во взаимосвязи с перинатальными факторами и условиями воспитания. Ведущими предикторами риска когнитивных нарушений у детей, родившихся преждевременно, являются глубокая незрелость к моменту рождения (гестационный возраст менее 27 нед) и потребность в интенсивной терапии в первые недели жизни. Приведены данные лонгитудинальных наблюдений за развитием недоношенных детей до достижения ими взрослого возраста, в которых изучена структура когнитивных нарушений в этой популяции. Обнаружено преобладание нарушений усвоения математики, а также оперативной памяти и целенаправленной деятельности; частота этих когнитивных нарушений связана как со степенью недоношенности, так и с социальным неблагополучием семьи. Современные методы нейровизуализации (диффузно-взвешенная и функциональная магнитно-резонансная томография (МРТ) мозга) позволяют уже в возрасте 18 мес определить у ребенка нарушения формирования нейронных сетей (коннектом) как морфологический субстрат когнитивных нарушений, что позволяет прогнозировать индивидуальную траекторию его развития и проводить направленные корригирующие вмешательства.

Об авторах

И. А. Беляева
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Морозовская детская городская клиническая больница
Россия

Беляева Ирина Анатольевна, доктор медицинских наук, профессор РАН, профессор кафедры факультетской педиатрии педиатрического факультета РНИМУ им. Пирогова, руководитель неонатальной службы ГБУЗ «Морозовская ДГКБ ДЗМ», руководитель отдела НИИ педиатрии и охраны здоровья детей ФГБУЗ ЦКБ РАН Минобрнауки

117997, Москва, ул. Островитянова, д. 1

тел.: +7 (499) 259-01-08



А. А. Баранов
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки; Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)
Россия
Москва


Л. С. Намазова-Баранова
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Белгородский государственный национальный исследовательский университет
Россия
Москва; Белгород


К. Э. Эфендиева
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки
Россия
Москва


П. С. Аримова
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки
Россия
Москва


А. И. Молодченков
Федеральный исследовательский центр «Информатика и управление»; Общество с ограниченной ответственностью «Технологии системного анализа»
Россия
Москва


Е. П. Бомбардирова
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки
Россия
Москва


Г. А. Каркашадзе
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки
Россия
Москва


Т. В. Турти
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; НИИ организации здравоохранения и медицинского менеджмента ДЗ г. Москвы; Детская городская клиническая больница № 9 имени Г.Н. Сперанского
Россия
Москва


Е. А. Вишнёва
НИИ педиатрии и охраны здоровья детей ФГБУЗ Центральная клиническая больница РАН Минобрнауки
Россия
Москва


Список литературы

1. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, et al. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009;124(2):717–728. doi: 10.1542/peds.2008-2816.

2. Finch-Edmondson M, Morgan C, Hunt RW, Novak I. Emergent Prophylactic, Reparative and Restorative Brain Interventions for Infants Born Preterm With Cerebral Palsy. Front Physiol. 2019;10:15. doi: 10.3389/fphys.2019.00015.

3. Allotey J, Zamora J, Cheong-See F, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a metaanalysis and systematic review involving 64 061 children. BJOG. 2018;125(1):16–25 doi: 10.1111/1471-0528.14832.

4. Hoogman M, Muetzel R, Guimaraes JP, et al. Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. Am J Psychiatry. 2020 Jun 16; appi-ajp202019030331. Online ahead of print. doi: 10.1176/appi.ajp.2020.19030331.

5. The Economic Impact of Cerebral Palsy in Australia in 2007. Report by Access Economics Pty Limited for Cerebral Palsy Australia. Canberra, ACT: Access Economics; 2008. Available online: https://cpaustralia.com.au/media/20379/access_economics_report.pdf. Accesses on: August 20, 2020.

6. Tonmukayakul U, Shih STF, Bourke-Taylor H, et al. Systematic review of the economic impact of cerebral palsy. Res Dev Disabil. 2018;80:93–101. doi: 10.1016/j.ridd.2018.06.012.

7. Beyond the NICU: Comprehensive Care of the High-Risk Infant. Malcolm WF, ed. New York, NY: McGraw-Hill Professional Publication; 2014.

8. Sharma D. Golden hour of neonatal life: Need of the hour. Matern Health Neonatol Perinatol. 2017;3:16. doi: 10.1186/s40748-017-0057-x.

9. Polin RA, Carlo WA. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156. doi: 10.1542/peds.2013-3443.

10. Nair J, Kumar VHS. Current and Emerging Therapies in the Management of Hypoxic Ischemic Encephalopathy in Neonates. Children. 2018;5(7):99. doi: 10.3390/children5070099.

11. Beauregard JL, Drews-Botsch C, Sales JM, et al. Does socioeconomic status modify the association between preterm birth and children’s early cognitive ability and kindergarten academic achievement in the United States? Am J Epidemiol. 2018;187(8):1704–1713. doi: 10.1093/aje/kwy068.

12. Breeman LD, Jaekel J, Baumann N, et al. Neonatal predictors of cognitive ability in adults born very preterm: a prospective cohort study. Dev Med Child Neurol. 2017; 59(5):477–483. doi: 10.1111/dmcn.13380.

13. Edwards AD, Redshaw ME, Kennea N, et al. Effect of MRI on preterm infants and their families: a randomised trial with nested diagnostic and economic evaluation. Arch Dis Child Fetal Neonatal Ed. 2018;103(1):F15–F21. doi: 10.1136/archdischild-2017-313102.

14. De Vries LS, Van Haastert IC, Benders MJ, Groenendaal F. Myth: cerebral palsy cannot be predicted by neonatal brain imaging. Semin Fetal Neonatal Med. 2011;16(5):279–287. doi: 10.1016/j.siny.2011.04.004.

15. Bosanquet M, Copeland L, Ware R, et al. A systematic review of tests to predict cerebral palsy in young children. Dev Med Child Neurol. 2013;55(5):418–426 doi: 10.1111/dmcn.12140.

16. Meng C, Bäuml JG, Daamen M, et al. Extensive and interrelated subcortical white and graymatter alterations in preterm-born adults. Brain Struct Funct. 2016;221(4):1–13. doi:10.1007/s00429-015-1032-9.

17. Heinonen K, Eriksson JG, Kajantie E, et al. Late-Preterm Birth and Lifetime Socioeconomic Attainments: The Helsinki Birth Cohort Study. Pediatrics. 2013;132(4):647–655. doi: 10.1542/peds.2013-0951.

18. Basten M, Jaekel J, Johnson S, et al. Preterm birth and adult wealth: Mathematics skills count. Psychol Sci. 2015;26(10):1608–1619. doi: 10.1177/0956797615596230

19. Sunderam S, Kissin DM, Zhang Y, et al. Assisted Reproductive Technology Surveillance — United States, 2016. MMWR Surveill Summ. 201926;68(4):1–23. doi: 10.15585/mmwr.ss6804a1.

20. Tanaka Н, Tanaka К, Osato К, et al. Evaluation of Maternal and Neonatal Outcomes of Assisted Reproduction Technology: A Retrospective Cohort Study. Medicina (Kaunas). 2020;56(1):32. doi: 10.3390/medicina56010032.

21. Chang H-Y, Hwu W-L, Chen Ch-H, et al. Children Conceived by Assisted Reproductive Technology Prone to Low Birth Weight, Preterm Birth, and Birth Defects: A Cohort Review of More Than 50,000 Live Births During 2011-2017 in Taiwan. Front Pediatr. 2020;8:87. doi: 10.3389/fped.2020.00087.

22. Hansen M, Greenop KR, Bourke J, et al. Intellectual disability in children conceived using assisted reproductive technology. Pediatrics. 2018;142(6):e20181269. doi: 10.1542/peds.2018-1269.

23. Sandin S, Nygren KG, Iliadou A, et al. Autism and mental retardation among offspring born after in vitro fertilization. JAMA. 2013;310(1):75–84. doi: 10.1001/jama.2013.7222.

24. Fountain C, Zhang Y, Kissin DM, et al. Association between assisted reproductive technology conception and autism in California, 1997–2007. Am J Public Health. 2015;105(5):963–971. doi: 10.2105/AJPH.2014.302383.

25. Catford SR, McLachlan RI, O’Bryan MK. Long-term follow-up of intra-cytoplasmic sperm injection-conceived offspring compared with in vitro fertilization-conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology. 2017;5(4):610–621. doi: 10.1111/andr.12369.

26. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S239. doi: 10.1044/1092-4388(2008/018).

27. Reid LB, Pagnozzi AM, Fiori S, et al. Measuring neuroplasticity associated with cerebral palsy rehabilitation: an MRI based power analysis. Int J Dev Neurosci. 2017; 58: 17–25. doi: 10.1016/j.ijdevneu.2017.01.010

28. Adams-Chapman I, Heyne RJ, DeMauro SB, et al. Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics. 2018;141(5):e20173091 doi: 10.1542/peds.2017-3091.

29. Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants. Cochrane Database Syst Rev. 2017;4(4):CD011190. doi: 10.1002/14651858.CD011190.pub2.

30. Martinez-Biarge M, Groenendaal F, Kersbergen KJ, et al. MRI based preterm white matter injury classification: the importance of sequential imaging in determining severity of injury. PLoS ONE. 2016;11(6):e0156245. doi: 10.1371/journal.pone.0156245.

31. Young JM, Vandewouw MM, Mossad SI, et al. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm. Neuroimage Clin. 2019;23:101855. doi: 10.1016/j.nicl.2019.101855.

32. Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136(6):1132–1143. doi: 10.1542/peds.2015-0944.

33. Kono Y, Yonemoto N, Nakanishi H, et al. Changes in survival and neurodevelopmental outcomes of infants born at <25 weeks’ gestation: a retrospective observational study in tertiary centres in Japan. BMJ Paediatr Open. 2018;2(1):e000211. doi:10.1136/bmjpo-2017-000211.

34. Doyle LW, Cheong JL, Burnett A, et al. Biological and social influences on outcomes of extreme-preterm/low-birth weight adolescents. Pediatrics. 2015;136(6):e1513–e1520. doi: 10.1542/peds.2015-2006.

35. Trounson A, Dewitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17(3):194–200. doi: 10.1038/nrm.2016.10.

36. Novak I, Walker K, Hunt RW, et al. Concise review: stem cell interventions for people with cerebral palsy: systematic review with meta-analysis. Stem Cells Transl Med. 2016;5(8):1014–1025. doi: 10.5966/sctm.2015-0372.

37. Ahn SY, Chang YS, Sung SI, et al. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I doseescalation clinical trial. Stem Cells Transl Med. 2018;7(12):847–856. doi: 10.1002/sctm.17-0219.

38. Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammationinduced preterm brain injury. Brain Behav Immun. 2017;60:220–232. doi: 10.1016/j.bbi.2016.11.011.

39. Panfoli I, Ravera S, Podesta M, et al. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J. 2016;30(4):1416–1424. doi: 10.1096/fj.15-279679.

40. Fischer HS, Reibel NJ, Buhrer C, et al. Prophylactic early erythropoietin for neuroprotection in preterm infants: a meta-analysis. Pediatrics. 2017;139(5):556–566. doi: 10.1542/peds.2016-4317.

41. Merchant N, Azzopardi D, Counsell S, et al. Melatonin as a novel neuroprotectant in preterm infants – a double blinded randomised controlled trial (mint study). Arch Dis Child. 2014;99(Suppl 2):A43. doi: 10.1136/archdischild-2014-307384.125.

42. Dickinson H, Ellery S, Ireland Z, et al. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. doi: 10.1186/1471-2393-14-150.

43. Jellema RK, Lima Passos V, Ophelders DR, et al. Systemic G-CSF attenuates cerebral inflammation and hypomyelination but does not reduce seizure burden in preterm sheep exposed to global hypoxia-ischemia. Exp Neurol. 2013;250:293–303. doi: 10.1016/j.expneurol.2013.09.026.

44. Strahan JA, Walker WH, Montgomery TR, et al. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Dev Neurobiol. 2017;77(6):753–766. doi: 10.1002/dneu.22457

45. Scafidi J, Hammond TR, Scafidi S, et al. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature. 2014;506(7487): 230–234. doi: 10.1038/nature12880.

46. Zhu Y, Wendler CC, Shi O, Rivkees SA. Diazoxide promotes oligodendrocyte differentiation in neonatal brain in normoxia and chronic sublethal hypoxia. Brain Res. 2014;586:64–72. doi: 10.1016/j.brainres.2014.08.046.

47. Nance E, Porambo M, Zhang F, et al. Systemic dendrimerdrug treatment of ischemiainduced neonatal white matter injury. J Control Release. 2015;214:112–120. doi: 10.1016/j.jconrel.2015.07.009.

48. Nemeth CL, Drummond GT, Mishra MK, et al. Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxicischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia. Nanomedicine. 2017;13(7):2359–2369. doi: 10.1016/j.nano.2017.06.014.

49. Soleimani F, Azari N, Ghiasvand H, et al. Do NICU developmental care improve cognitive and motor outcomes for preterm infants? A systematic review and meta-analysis. BMC Pediatrics. 2020;20(1):67. doi: 10.1186/s12887-020-1953-1.

50. Moeskops P, Išgum I, Keunen K, et al. Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images. Sci Rep. 2017;7(1):2163. doi: 10.1038/s41598-017-02307-w.

51. Farooqi A, Adamsson M, Serenius F, et al. Executive Functioning and Learning Skills of Adolescent Children Born at Fewer than 26 Weeks of Gestation. PLoS ONE. 2016;11(3):e0151819. doi: 10.1371/journal.pone.0151819.

52. Jaekel J, Baumann N, Bartmann P, et al. General cognitive but not mathematic abilities predict very preterm and healthy term born adults’ wealth. PLoS ONE. 2019;14(3):e0212789. doi: 10.1371/journal.pone.0212789.

53. Wolke D, Strauss VY-Ch, Johnson S, et al. Universal Gestational Age Effects on Cognitive and Basic Mathematic Processing: 2 Cohorts in 2 Countries. J Pediatr. 2015;166(6):1410–1416.e1–2. doi: 10.1016/j.jpeds.2015.02.065.

54. Sejer EPF, Bruun FJ, Slavensky JA, et al. Impact of gestational age on child intelligence, attention and executive function at age 5: a cohort study. BMJ Open. 2019;9(9):e028982. doi:10.1136/bmjopen-2019-028982.

55. Aarnoudse-Moens CS, Duivenvoorden HJ, Weisglas-Kuperus N, et al. The profile of executive function in very preterm children at 4 to 12 years. Dev Med Child Neurol. 2012;54(3):247–253. doi: 10.1111/j.1469-8749.2011.04150.x.

56. Farooqi A, Hägglöf B, Serenius F. Behaviours related to executive functions and learning skills at 11 years of age after extremely preterm birth: a Swedish national prospective follow-up study. Acta Paediatr. 2013;102(6):625–634. doi: 10.1111/apa.12219.

57. Aarnoudse-Moens CSH, Weisglas-Kuperus N, Duivenvoorden HJ, et al. Executive function and IQ predict mathematical and attention problems in very preterm children. PLoS ONE. 2013;8(2):e55994. doi: 10.1371/journal.pone.0055994.

58. Best JR, Miller PH. A developmental perspective on executive function. Child Dev. 2010;81(6):1641–1660. doi: 10.1111/j.1467-8624.2010.01499.x.

59. Luu TM, Ment L, Allan W, et al. Executive and memory function in adolescents born very preterm. Pediatrics. 2011;127(3):e639–e646. doi: 10.1542/peds.2010-1421.

60. Litt JS, Gerry Taylor H, Margevicius S, et al. Academic achievement of adolescents born with extremely low birth weight. Acta Paediatr. 2012;101(12):1240–1245. doi: 10.1111/j.1651-2227.2012.02790.x

61. McKinstry RC, Miller JH, Snyder AZ, et al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology. 2002;59(6):824–833. doi: 10.1212/WNL.59.6.824.

62. Wolke D, Meyer R. Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: the Bavarian Longitudinal Study. Dev Med Child Neurol. 1999;41(2):94–109. doi: 10.1017/s0012162299000201.

63. Darlow BA, Horwood LJ, Pere-Bracken HM, Woodward LJ. Psychosocial outcomes of young adults born very low birth weight. Pediatrics. 2013;132(6):E1521–E1528. doi: 10.1542/peds.2013-2024.

64. Bauml JG, Meng C, Daamen M, et al. The association of children’s mathematic abilities with both adults’ cognitive abilities and intrinsic fronto-parietal networks is altered in preterm-born individuals. Brain Struct Funct. 2017;222(2):799–812. doi: 10.1007/s00429-016-1247-4.

65. Rommel A-S, James S-N, McLoughlin G, et al. Altered EEG spectral power during rest and cognitive performance: a comparison of preterm-born adolescents to adolescents with ADHD. Eur Child Adolesc Psychiatry. 2017;26(12):1511–1522. doi: 10.1007/s00787-017-1010-2.

66. Wehrle FM, Latal B, O’Gorman RL, et al. Sleep EEG maps the functional neuroanatomy of executive processes in adolescents born very preterm. Cortex. 2017;86:11–21. doi: 10.1016/j.cortex.2016.10.011.

67. Grothe MJ, Scheef L, Bauml J, et al. Reduced cholinergic basal forebrain integrity links neonatal complications and adult cognitive deficits after premature birth. Biol Psychiatry. 2017;82(2):119–126. doi: 10.1016/j.biopsych.2016.12.008.

68. Johnson S, Strauss V, Gilmore C, et al. Learning disabilities among extremely preterm children without neurosensory impairment: Comorbidity, neuropsychological profiles and scholastic outcomes. Early Hum Dev. 2016;103:69–75. doi: 10.1016/j.earlhumdev.2016.07.009.

69. Breeman LD, Jaekel J, Baumann N, et al. Preterm Cognitive Function Into Adulthood. Pediatrics. 2015;136(3):415–423. doi: 10.1542/peds.2015-0608.

70. van den Heuvel MP, Kersbergen KJ, de Reus MA, et al. The Neonatal Connectome During Preterm Brain Development. Cereb Cortex. 2015;25(9):3000–3013. doi: 10.1093/cercor/bhu095.

71. van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31(44):15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011.

72. Kostovic I, Jovanov-Milosevic N, Rados M, et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct. 2014;219(1):231–253. doi: 10.1007/s00429-012-0496-0.

73. Petanjek Z, Judas M, Simic G, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA. 2011;108(32):13281–13286. doi: 10.1073/pnas.1105108108.

74. Collin G, Sporns O, Mandl RC, et al. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. 2014;24(9):2258–2267. doi: 10.1093/cercor/bht064.

75. Agut Т. Early identification of brain injury in infants with hypoxic ischemic encephalopathy at high risk for severe impairments: accuracy of MRI performed in the first days of life. BMC Pediatrics. 2014;14:177. doi: 10.1186/1471-2431-14-177.

76. Kline JE, Illapani VSP, He L, et al. Early cortical maturation predicts neurodevelopment in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2020;105(5):460–465. doi: 10.1136/archdis-child-2019-317466.

77. Gozdas E, Parikh NA, Merhar SL, et al. Altered functional network connectivity in preterm infants: antecedents of cognitive and motor impairments? Brain Struct Funct. 2018;223(8):3665–3680. doi: 10.1007/s00429-018-1707-0.

78. Linke AC, Wild C, Zubiaurre-Elorza L, et al. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months. Neuroimage Clin. 2018;18:399–406. doi: 10.1016/j.nicl.2018.02.002.

79. Murray AL, Scratch SE, Thompson DK, et al. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology. 2014;28(4):552–562. doi: 10.1037/neu0000071.

80. Linsell L, Johnson S, Wolke D, et al. Cognitive trajectories from infancy to early adulthood following birth before 26 weeks of gestation: a prospective, population-based cohort study. Arch Dis Child. 2018;103(4):363–370. doi: 10.1136/archdischild-2017-313414.

81. Stålnacke SR, Tessma M, Böhm B, et al. Cognitive Development Trajectories in Preterm Children With Very Low Birth Weight Longitudinally Followed Until 11 Years of Age. Front Physiol. 2019;10:307. doi: 10.3389/fphys.2019.00307.

82. Twilhaar ES, Wade RM, de Kieviet JF, et al. Cognitive Outcomes of Children Born Extremely or Very Preterm Since the 1990s and Associated Risk Factors. JAMA Pediatr. 2018;172(4):361–367. doi: 10.1001/jamapediatrics.2017.5323.

83. Kolb B, Harker A, Gibb R. Principles of plasticity in the developing brain. Dev Med Child Neurol. 2017;59(12):1218–1223. doi: 10.1111/dmcn.13546.

84. Rodriguez RG, Pattini AE. Neonatal intensive care unit lighting: update and recommendations. Arch Argent Pediatr. 2016;114(4):361–367. doi: 10.5546/aap.2016.361.

85. Shoemark H, Harcourt E, Arnup SJ, Hunt RW. Characterising the ambient sound environment for infants in intensive care wards. J Paediatr Child Health. 2016;52(4): 436–440. doi: 10.1111/jpc.13084.

86. Ohlsson A, Jacobs SE. NIDCAP: a systematic review and meta-analyses of randomized controlled trials. Pediatrics. 2013;131(3):e881–e893. doi: 10.1542/peds.2012-2121.

87. Whittingham K, Boyd RN, Sanders MR, Colditz P. Parenting and prematurity: understanding parent experience and preferences for support. J Child Family Stud. 2014;23:1050–1061. doi: 10.1007/s10826-013-9762-x.

88. Ustad T, Evensen KA, Campbell SK, et al. Early parent-administered physical therapy for preterm infants: a randomized controlled trial. Pediatrics. 2016;138(2):F190–F192. doi: 10.1542/peds.2016-0271.

89. Spittle A, Orton J, Anderson PJ, et al. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2015;(11):CD005495. doi: 10.1002/14651858.CD005495.pub4.

90. Алгоритмы диагностики, лечения и реабилитации перинатальной патологии маловесных детей / под ред. проф. Г.В. Яцык. М.: Педагогика-Пресс, 2002. 96 с.

91. Guzzetta A, Baldini S, Bancale A, et al. Massage accelerates brain development and the maturation of visual function. J Neurosci. 2009;29(18):6042–6051. doi: 10.1523/JNEUROSCI.5548-08.2009.

92. Lubetzky R, Mimouni FB, Dollberg S, et al. Effect of music by Mozart on energy expenditure in growing preterm infants. Pediatrics. 2010;125(1):e24–e28. doi: 10.1542/peds.2009-0990.

93. Arimitsu Т, Minagawa Y, Yagihashi T, et al. The cerebral hemodynamic response to phonetic changes of speech in preterm and term infants: The impact of postmenstrual age. Neuroimage Clin. 2018;19:599–606. doi: 10.1016/j.nicl.2018.05.005.

94. Hepper PG, Shahidullah, BS. The development of fetal hearing. Fetal Matern Med Rev. 1994;6(3):167–179. doi: 10.1017/S0965539500001108.

95. Morlet T, Lapillonne A, Ferber C, et al. Spontaneous otoacoustic emissions in preterm neonates – prevalence and gender effects. Hear Res. 1995;90(1–2):44–54. doi: 10.1016/0378-5955(95)00144-4.

96. Hykin J, Moore R, Duncan K, et al. Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet. 1999;354(9179):645–646. doi: 10.1016/S0140-6736(99)02901-3.

97. Chorna O, Filippa M, Sa De Almeida J, et al. Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plast. 2019;2019:3972918. doi: 10.1155/2019/3972918.

98. Chikahisa S, Sei H, Morishima M, et al. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res. 2006;169(2):312–319. doi: 10.1016/j.bbr.2006.01.021.

99. Kim CH, Lee SC, Shin JW, et al. Exposure to music and noise during pregnancy influences neurogenesis and thickness in motor and somatosensory cortex of rat pups. Int Neurourol J. 2013;17(3):107–113. doi: 10.5213/inj.2013.17.3.107.

100. Pittet-Metrailler МР, Murner-Lavanchy I, Adams M, et al. Neurodevelopmental outcome at early school age in a Swiss national cohort of very preterm children. Swiss Med Wkly. 2019;149:w20084. doi:10.4414/smw.2019.20084.

101. Баранов А.А., Намазова-Баранова Л.С., Каркашадзе Г.А. Новые нейробиологические подходы к профилактике и лечению перинатальных поражений ЦНС. — М.: Российская академия наук; 2017. — 106 с.


Для цитирования:


Беляева И.А., Баранов А.А., Намазова-Баранова Л.С., Эфендиева К.Э., Аримова П.С., Молодченков А.И., Бомбардирова Е.П., Каркашадзе Г.А., Турти Т.В., Вишнёва Е.А. Предикторы когнитивных нарушений и возможности их профилактики у недоношенных детей. Педиатрическая фармакология. 2020;17(4):318-327. https://doi.org/10.15690/pf.v17i4.2164

For citation:


Belyaeva I.A., Baranov A.A., Namazova-Baranova L.S., Efendieva K.E., Arimova P.S., Molodchenkov A.I., Bombardirova E.P., Karkashadze G.A., Turti T.V., Vishnyova E.A. Predictors of Cognitive Defects and Its Prevention Capabilities in Premature Infants. Pediatric pharmacology. 2020;17(4):318-327. (In Russ.) https://doi.org/10.15690/pf.v17i4.2164

Просмотров: 112


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)