Functional Properties of Modern Supplemental Feeding Products
https://doi.org/10.15690/pf.v17i2.2099
Abstract
The first thousand days of the child’s life are the critical window for formation of his health. Rationality, balance, availability of nutrition, creation of conditions for development of tolerance to food have the highest importance in this period. Healthy food and use of functional products can prevent the development of certain chronic non-communicable diseases such as cardiovascular diseases, metabolic syndrome, obesity, type 2 diabetes, allergies according to recent international studies. The unstable balance between formation of tolerance and effector immune reactions can be disrupted due to improper feeding during the implementation of supplemental feeding. Thus, functional gastrointestinal disorders can transform into pathological conditions. It is relevant to determine the range of supplemental feeding products that have functional properties, and so to use them during this window of tolerance in the diet of the child who has risk of development of allergies with functional gastrointestinal disorders.
Keywords
About the Authors
Tatiana V. TurtiRussian Federation
Moscow
Disclosure of interest:
receiving research grants from PROGRESS JSC
Leyla S. Namazova-Baranova
Russian Federation
Moscow; Belgorod
Disclosure of interest:
receiving research grants and fees for scientific counseling and lecturing from pharmaceutical companies MSD Pharmaceuticals LLC, FORT LLC, Shire Biothech Rus LLC, Pfizer Innovations LLC, Sanofi Aventis Group LLC, AbbVie LLC, Pierre Fabre LLC
Irina A. Belyaeva
Russian Federation
Moscow
Disclosure of interest:
confirmed the absence of a reportable conflict of interests
Elena A. Bakovich
Russian Federation
Moscow
Disclosure of interest:
receiving research grants from PROGRESS JSC
References
1. Leyk E, Arnol’d T. Pervyye 1000 dney zhizni rebenka okazyvayut vliyaniye na vsyu ego dal’neysh·chyu zhizn’. Uluchsheniye polozheniya del v oblasti pitaniya detey v tselyakh postroyeniya spravedlivogo mira. Prezentatsiya novogo doklada YUNISEF “Uluchsheniye polozheniya del v oblasti pitaniya detey: neotlozhnaya i dostizhimaya tsel’ v reshenii problem global’nogo razvitiya” [Internet]. Dublin; 2013. (In Russ). Доступно по: https://studylib.ru/doc/2746761/2013---unicef. Ссылка активна на 16.01.2020.
2. Kalach N, Bellaïche M, Elias-Billon I, Dupont C. Family history of atopy in infants with cow’s milk protein allergy: A French population-based study. Arch Pediatr. 2019;26(4):226–231. doi: 10.1016/j.arcped.2019.02.014.
3. Agostoni C, Przyrembel H. The timing of introduction of complementary foods and later health. World Rev Nutr Diet. 2013;108:63–70. doi: 10.1159/000351486.
4. Novik GA. Strategy of food tolerance development in children with food allergy. Current pediatrics. 2015;14(1):70–77. (In Russ). doi: 10.15690/vsp.v14i1.1265.
5. Takiishi T, Fenero CI, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208. doi: 10.1080/21688370.2017.1373208.
6. Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):103. doi: 10.1038/s12276-018-0126-x.
7. Yu JC, Khodadadi H, Malik A, et al. Innate Immunity of Neonates and Infants. Front Immunol. 2018;9:1759. doi: 10.3389/fimmu.2018.01759.
8. Pannaraj PS, Li F, Cerini C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–654. doi: 10.1001/jamapediatrics.2017.0378.
9. Aakko J, Kumar H, Rautava S, et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017;8(4):563–567. doi: 10.3920/BM2016.0185.
10. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):4169. doi: 10.1038/s41467-018-06473-x.
11. Borewicz K, Suarez-Diez M, Hechler C, et al. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci Rep. 2019;9(1):2434. doi: 10.1038/s41598-018-38268-x.
12. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. doi: 10.1186/s13073-016-0294-z.
13. Korpela K, Salonen A, Vepsäläinen O, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018;6(1):182. doi: 10.1186/s40168-018-0567-4.
14. Matamoros S, Gras-Leguen C, Le Vacon F, et al. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 2013;21(4):167–173. doi: 10.1016/j.tim.2012.12.001.
15. Lohner S, Küllenberg D, Antes G, et al. Prebiotics in healthy infants and children for prevention of acute infectious diseases: a systematic review and meta-analysis. Nutr Rev. 2014;72(8):523–531. doi: 10.1111/nure.12117.
16. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–566. doi: 10.1136/gutjnl-2012-303249.
17. Vatanen T, Plichta DR, Somani J, et al. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat Microbial. 2018;4(3):470–479. doi: 10.1038/s41564-018-0321-5.
18. Turti TV, Belyaeva IA, Snovskaya MA, et al. Implication of modern complementary foods in critical period for child health programming. Pediatric pharmacology. 2018;15(3):270–276. (In Russ). doi: 10.15690/pf.v15i3.1909.
19. Borovik TJe, Skvorcova VA, Jacyk GV, et al. Funkcional’nye narushenija zheludochno-kishechnogo trakta u detej grudnogo vozrasta: rol’ dietoterapii. Practitioner. 2011;(6):66. (In Russ).
20. Pijpers MA, Bongers ME, Benninga MA, Berger MY. Functional constipation in children: a systematic review on prognosis and predictive factors. J Pediatr Gastroenterol Nutr. 2010;50(3):256–268. doi: 10.1097/MPG.0b013e3181afcdc3.
21. Benninga MA, Faure C, Hyman PE, et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016. pii: S0016-5085(16)00182-7. doi: 10.1053/j.gastro.2016.02.016.
22. Vandenplas Y, Abkari A, Bellaiche M, et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(5):531–537. doi: 10.1097/MPG.0000000000000949.
23. Vandenplas Y. Algorithms for common gastrointestinal disorders. J Pediatr Gastroenterol Nutr. 2016;63(Suppl 1):S38–S40. doi: 10.1097/MPG.0000000000001220.
24. Bellaiche M, Oozeer R, Gerardi-Temporel G, et al. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. 2018;107(7):1276–1282. doi: 10.1111/apa.14348.
25. Mahon J, Lifschitz C, Ludwig T, et al. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England. BMJ Open. 2017;7(11):e015594. doi: 10.1136/bmjopen-2016-015594.
26. Bellaiche M, Oozeer R, Gerardi-Temporel G, et al. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. 2018; 107(7):1276–1282. doi: 10.1111/apa.14348.
27. Vandenplas Y, Hauser B, Salvatore S. Functional Gastrointestinal Disorders in Infancy: Impact on the Health of the Infant and Family. Pediatr Gastroenterol Hepatol Nutr. 2019;22(3):207–216. doi: 10.5223/pghn.2019.22.3.207.
28. Van Tilburg MA, Hyman PE, Walker L, et al. Prevalence of functional gastrointestinal disorders in infants and toddlers. J Pediatr. 2015;166(3):684–689. doi: 10.1016/j.jpeds.2014.11.039.
29. Mahon J, Lifschitz C, Ludwig T, et al. The costs of functional gastrointestinal disorders and related signs and symptoms in infants: a systematic literature review and cost calculation for England. BMJ Open. 2017;79(11): e015594. doi: 10.1136/bmjopen-2016-015594.
30. McBurney MI, Davis C, Fraser CM, et al. Latulippe establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr. 2019;149(11):1882–1895. doi: 10.1093/jn/nxz154.
31. Food with health claims, food for special dietary uses, and nutrition labeling [Internet]. Japan Ministry of Health, Labour, and Welfare; 1991 [cited 2019 Mar 11]. Available from: https://www.mhlw.go.jp/english/topics/foodsafety/fhc/.
32. Yamada K, Sato-Mito N, Nagata J, Umegaki K. Health claim evidence requirements in Japan. J Nutr. 2008;138(6):1192S–1198S. doi: 10.1093/jn/138.6.1192S.
33. Kamioka H, Tsutani K, Origasa H, et al. Quality of systematic reviews of the foods with function claims in japan: comparative before- and after-evaluation of verification reports by the consumer affairs agency. Nutrients. 2019;11(7):1583. doi: 10.3390/nu11071583.
34. Namazova-Baranova LS, Turti TV, Snovskaya MA, et al. Assessment of tolerability and safety of monocomponent complementary food products in the diet of infants with risk for allergic diseases. Current pediatrics. 2016;15(2):154–160. (In Russ). doi: 10.15690/vsp.v15i2.1533.
35. FoodData Central is an integrated data system that provides expanded nutrient profile data and links to related agricultural and experimental research. U.S. DEPARTMENT OF AGRICULTURE. Agricultural Research Service; 2020. Available from: https://fdc.nal.usda.gov.
36. Arnarson A. Buckwheat 101: Nutrition facts and health benefits. [cited 2019 May 10] Available from: https://www.healthline.com/nutrition/foods/buckwheat#nutrients.
37. Jiang P, Burczynski F, Campbell C, et al. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res Int. 2007;40(3) 356–364.
38. Tomotake H, Shimaoka I, Kayashita J, et al. A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters. J Nutr. 2000;130(7):1670–1674. doi: 10.1093/jn/130.7.1670.
39. Liu Z, Ishikawa W, Huang X, et al. A buckwheat protein product suppresses 1,2-dimethylhydrazine-induced colon carcinogenesis in rats by reducing cell proliferation. J Nutr. 2001;131(6):1850–1853. doi: 10.1093/jn/131.6.1850.
40. Yamada K, Urisu A, Morita Y, et al. Immediate hypersensitive reactions to buckwheat ingestion and cross allergenicity between buckwheat and rice antigens in subjects with high levels of IgE antibodies to buckwheat. Ann Allergy Asthma Immunol. 1995;75(1):56–61.
41. Arnarson A. What to know about rice. [cited 2019 May 10] Available from: https://www.medicalnewstoday.com/articles/318699
42. Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes. 2011;2(2):103–114. doi: 10.3920/BM2011.0003.
43. Fung KY, Cosgrove L, Lockett T, et al. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 2012;108(5):820–831. doi: 10.1017/S0007114512001948.
44. Arnarson A. Corn 101: Nutrition facts and health benefits. [cited 2019 May 16] Available from: https://www.healthline.com/nutrition/foods/corn.
45. Seddon JM, Ajani UA, Sperduto RD, et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. JAMA. 1994;272(18):1413–1420. doi: 10.1001/jama.272.18.1413.
46. Bjarnadottir A. Broccoli 101: Nutrition facts and health benefits. [cited 2019 May 10] Available from: https://www.healthline.com/nutrition/foods/broccoli.
47. Vasanthi HR, Mukherjee S, Das DK. Potential health benefits of broccolia chemico-biological overview. Mini Rev Med Chem. 2009;9(6):749–759. doi: 10.2174/138955709788452685.
48. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: is it the source or dose that matters? Molecules. 2019;24(19):3593. doi: 10.3390/molecules24193593.
49. Elliott B. The Top 8 Health Benefits of Cauliflower. [cited 2019 May 16] Available from:https://www.healthline.com/nutrition/benefits-of-cauliflower
50. Moy zdorovyy ratsion: virtual’nyy trener i diyetolog. Kaloriynost’ Myaso krolika. Khimicheskiy sostav i pishchevaya tsennost’ [Internet]. (In Russ). Доступно по: https://health-diet.ru/base_of_food/sostav/159.php. Ссылка активна на 16.01.2020.
51. Khimicheskiy sostav rossiyskikh pishchevykh produktov. Spravochnik. Ed by I.M. Skurikhin, V.A. Tutel’yan. Moscow: Delhi-print; 2002. 236 р. (In Russ).
52. Dalle Zotte A, Szendro Z. The role of rabbit meat as functional food. Meat Sci. 2011;88(3):319–331. doi: 10.1016/j.meatsci.2011.02.017.
53. Moy zdorovyy ratsion: virtual’nyy trener i diyetolog. Kaloriynost’ Indeyka 1-y kat. Khimicheskiy sostav i pishchevaya tsennost’ [Internet]. (In Russ). Доступно по: https://health-diet.ru/base_of_food/sostav/776.php. Ссылка активна на 16.01.2020.
54. Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr. 2018;2(3): nzy005. doi: 10.1093/cdn/nzy005.
55. Benninga MA, Faure C, Hyman PE, et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2016;150:1443–1455.e2. doi: 10.1053/j.gastro.2016.02.016.
Review
For citations:
Turti T.V., Namazova-Baranova L.S., Belyaeva I.A., Bakovich E.A. Functional Properties of Modern Supplemental Feeding Products. Pediatric pharmacology. 2020;17(2):129-136. (In Russ.) https://doi.org/10.15690/pf.v17i2.2099