Preview

Педиатрическая фармакология

Расширенный поиск

VI тип несовершенного остеогенеза. Наблюдение редкого случая

https://doi.org/10.15690/pf.v16i1.2001

Аннотация

Несовершенный остеогенез — генетически гетерогенная группа заболеваний, отличительной чертой которых являются хрупкость костей и переломы, возникающие, как считалось долгое время, вследствие мутаций в генах коллагена. Однако, в течение последнего десятилетия скачок в области генетических открытий обусловил появление новой парадигмы понимания этиологии несовершенного остеогенеза, где большинство случаев связано с наличием дефекта в коллагеновых генах, в то время как редкие, в основном рецессивные формы связаны с дефектами генов, влияющих на посттрансляционную модификацию коллагена. В 2011 г. мутации в гене SERPINF1 были идентифицированы в качестве молекулярной причины развития VI типа несовершенного остеогенеза, и тем самым, была выявлена новая патофизиология заболевания. Дети с несовершенным остеогенезом VI типа имеют высокую частоту переломов, несмотря на проведение стандартной терапии бисфосфонатами, т.к. площадь минерализованного остеоида кости при данном типе заболевания значительно уменьшена.

Об авторах

О. Н. Игнатович
Национальный медицинский исследовательский центр здоровья детей
Россия

Игнатович Ольга Николаевна, аспирант

119991, Москва, Ломоносовский пр-т, д. 2, стр. 3



Л. С. Намазова-Баранова
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова; Центральная клиническая больница РАН
Россия
Москва


Т. В. Маргиева
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


Н. В. Журкова
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


К. В. Савостьянов
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


А. А. Пушков
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


Список литературы

1. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–557. doi: 10.1038/nrendo.2011.81.

2. Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int. 2016;27(12):3607–3613. doi: 10.1007/s00198-016-3709-1.

3. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–116. doi: 10.1136/jmg.16.2.101.

4. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A:1470–1481. doi: 10.1002/ajmg.a.36545.

5. Marini JC, Blissett AR. New genes in bone development what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98:3095–3103. doi: 10.1210/jc.2013-1505.

6. Bodian DL, Chan T-F, Poon A, et al. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype–phenotype relationships. Hum Mol Genet. 2009;18(3):463– 471. doi: 10.1093/hmg/ddn374.

7. Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin North Am. 2014;61(6):1243–1245. doi: 10.1016/j.pcl.2014.08.010.

8. Fratzl-Zelman N, Misof BM, Roschger P, Klaushofer K. Classification of osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):264–270. doi: 10.1007/s10354-015-0368-3.

9. Home/OMIM/NCBI. [Accessed 18 Feb 2015] Available from: https://www.ncbi.nlm.nih.gov/omim.

10. Shapiro JR. Clinical and genetic classification of osteogenesis imperfecta and epidemiology. In: Shapiro JR, Byers PH, Glorieux FH, Sponsellor PD, eds. Osteogenesis Imperfecta: a translational approach to brittle bone disease. Elsevier; 2014. рр. 15–22. doi: 10.1016/B978-0-12-397165-4.00002-2.

11. Glorieux FH, Ward LM, Rauch F, et al. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. Bone Miner Res. 2002;17(1):30–38. doi: 10.1359/jbmr.2002.17.1.30.

12. Trejo P, Rauch F, Ward L. Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2018;18(1):76–80.

13. Homan EP, Rauch F, Grafe I, et al. Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res. 2011;(26):2798– 2803. doi: 10.1002/jbmr.487.

14. Becker J, Semler O, Gilissen C, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;(88):362–371. doi: 10.1016/j.ajhg.2011.01.015.

15. Semler O, Netzer C, Hoyer-Kuhn H, et al. First use of the RANKL antibody denosumab in osteogenesis imperfect type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–188.

16. Akiyama T, Dass CR, Shinoda Y, et al. PEDF regulates osteoclasts via osteoprotegerin and RANKL. Biochem Biophys Res Commun. 2009;391:789–194. doi: 10.1016/j.bbrc.2009.11.139.

17. Barros ER, Saraiva GL, de Oliveira TP, Lazaretti-Castro M. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfect. J Pediatr Endocrinol Metab. 2012;25(5–6):485–491. doi: 10.1515/jpem-2012-0016.

18. Bishop N, Adami S, Faisal S, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo controlled trial. Lancet. 2013;382 (Issue 9902):1424–1432. doi: 10.1016/S0140-6736(13)61091-0.

19. Letocha AD, Cintas HL, Troendle JF, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res. 2005,20:977–986. doi: 10.1359/JBMR.050109.

20. Iqbal J, Sun L, Zaidi M. Denosumab for the treatment of osteoporosis. Curr Osteoporos Rep. 2010;8:163–167. doi: 10.1007/s11914-010-0034-z.

21. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363:1377–1385. doi: 10.1016/s0140-6736(04)16051-0.

22. Rauch F, Husseini A, Roughley P, et al. Lack of circulating pigment epithelium-derived factor is a marker of osteogenesis imperfecta type VI. J Clin Endocrinol Metab. 2012;97(8):E1550–1556. doi: 10.1210/jc.2012-1827.

23. Venturi G, Gandini A, Monti E, et al. Lack of expression of SERPINF1, the gene coding for pigment epithelium-derived factor, causes progressively deforming osteogenesis imperfecta with normal type I collagen. J Bone Miner Res. 2012;27(3):723–728. doi: 10.1002/jbmr.1480.

24. Caparrós-Martin JA, Valencia M, Pulido V, et al. Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotypephenotype correlations. Am J Med Genet. 2013;161A(6):1354– 1369. doi: 10.1002/ajmg.a.35938.

25. Cho SY, Ki CS, Sohn YB, et al. Osteogenesis imperfecta type VI with severe bony deformities caused by novel compound heterozygous mutations in serpinf1. J Korean Med Sci. 2013;28(7):1107–1110. doi: 10.3346/jkms.2013.28.7.1107.

26. Al-Jallad H, Palomo T, Moffatt P, et al. Normal bone density and fat mass in heterozygous SERPINF1 mutation carriers. J Clin Endocrinol Metab. 2014;99(11):E2446–2450. doi: 10.1210/jc.2014-2505.

27. Minillo RM, Sobreira N, de Faria Soares M, et al. Novel deletion of SERPINF1 causes autosomal recessive osteogenesis imperfecta type VI in two Brazilian families. Mol Syndromol. 2014;5(6):268– 275. doi: 10.1159/000369108.

28. Stephen J, Girisha KM, Dalal A, et al. Mutations in patients with osteogenesis imperfecta from consanguineous Indian families. Eur J Med Genet. 2015;58(1):21–27. doi: 10.1016/j.ejmg.2014.10.001.

29. Basel D, Steiner RD. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med. 2009;11(6):375–385. doi: 10.1097/GIM.0b013e3181a1ff7b.

30. Rohrbach M, Giunta C. Recessive osteogenesis imperfecta: clinical, radiological and molecular findings. Am J Med Genet C Semin Med Genet. 2012;160C(3):175–189. doi: 10.1002/ajmg.c.31334.

31. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–589. doi: 10.1016/s8756- 3282(00)00269-6.

32. Land C, Rauch F, Travers R, Glorieux FH. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone. 2007;40:638–644. doi: 10.1016/j.bone.2006.10.010.

33. Яхяева Г.Т., Намазова-Баранова Л.С., Маргиева Т.В. Новые аспекты генетической основы, классификации и лечения несовершенного остеогенеза: литературный обзор // Педиатрическая фармакология. — 2015. — Т.12. — №5. — С. 579–588. doi: 10.15690/pf.v12i5.1461.


Рецензия

Для цитирования:


Игнатович О.Н., Намазова-Баранова Л.С., Маргиева Т.В., Журкова Н.В., Савостьянов К.В., Пушков А.А. VI тип несовершенного остеогенеза. Наблюдение редкого случая. Педиатрическая фармакология. 2019;16(1):30-35. https://doi.org/10.15690/pf.v16i1.2001

For citation:


Ignatovich O.N., Namazova-Baranova L.S., Margieva T.V., Zhurkova N.V., Savostyanov K.V., Pushkov A.V. Clinic Case of Rare Type VI Osteogenesis Imperfecta. Pediatric pharmacology. 2019;16(1):30-35. (In Russ.) https://doi.org/10.15690/pf.v16i1.2001

Просмотров: 980


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)