Preview

Педиатрическая фармакология

Расширенный поиск

Кишечная микробиота и аллергия. Про- и пребиотики в профилактике и лечении аллергических заболеваний

https://doi.org/10.15690/pf.v16i1.1999

Аннотация

Микробиота кишечника является фактором, в значительной степени определяющим здоровье человека. Воздействие на ребенка микробного фактора начинается задолго до рождения, и определенные особенности формирования иммунного ответа и микробиоценоза кишечника дети имеют еще до рождения. Для детей с аллергическими заболеваниями характерно снижение разнообразия кишечной микробиоты в первые месяцы жизни — еще до развития аллергической патологии. Возможности корректировать процесс формирования микробиоты достаточно ограничены, однако показано, что раннее (в течение первых часов жизни) прикладывание к груди, грудное вскармливание в течение как минимум первых 6 мес жизни, использование пребиотиков в составе детских молочных смесей, а также применение пробиотиков с доказанной эффективностью может давать положительные эффекты в отношении профилактики аллергии. В обзоре приведены основные выводы последних метаанализов и согласительных документов международных медицинских сообществ в отношении возможности использования про- и пребиотиков в профилактике и лечении аллергических заболеваний. Несмотря на большой научный и практический интерес к проблеме, авторы метаанализов указывают на недостаточное количество клинических исследований, проведенных с соблюдением принципов доказательной медицины.

Об авторах

С. Г. Макарова
Национальный медицинский исследовательский центр здоровья детей
Россия

Макарова Светлана Геннадиевна, доктор медицинских наук, заведующая отделом профилактической педиатрии

119991, Москва, Ломоносовский пр-т, д. 2/2



Л. С. Намазова-Баранова
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова; Центральная клиническая больница РАН
Россия
Москва


О. А. Ерешко
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


Д. С. Ясаков
Национальный медицинский исследовательский центр здоровья детей
Россия
Москва


П. Е. Садчиков
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия
Москва


Список литературы

1. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810. doi: 10.1038/nature06244.

2. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. doi: 10.1038/nature11234.

3. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486(7402):215–221. doi: 10.1038/nature11209.

4. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease. ISME J. 2012;6(1):46–56. doi: 10.1038/ismej.2011.85.

5. Goodacre R. Metabolomics of a superorganism. J Nutr. 2007;137(1 Suppl):259S–266S. doi: 10.1093/jn/137.1.259S.

6. Kho ZY, Lal SK. The human gut microbiome — a potential controller of wellness and disease. frontiers in microbiology. Front Microbiol. 2018;9:1835. doi: 10.3389/fmicb.2018.01835.

7. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327– 336. doi: 10.1038/nature10213.

8. Payne MS, Bayatibojakhi S. Exploring preterm birth as a polymicrobial disease: an overview of the uterine microbiome. Front Immunol. 2014;5:595. doi: 10.3389/fimmu.2014.00595.

9. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184. doi: 10.1038/nature11319.

10. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.

11. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–108. doi: 10.1126/science.1208344.

12. Jeffery IB, Claesson MJ, O’Toole PW, Shanahan F. Categorization of the gut microbiota: enterotypes or gradients? Nature Rev Microbiol. 2012;10(9):591–592. doi: 10.1038/nrmicro2859.

13. Урсова Н.И. Основные физиологические функции интестинальной микрофлоры и формирование микробиоценоза у детей // Вопросы практической педиатрии. — 2006. — Т. 1. — №1. — С. 51–57.

14. Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4(1):15–21. doi: 10.1038/mi.2010.60.

15. Шендеров Б.А. Медицинская микробная экология и функциональное питание. Т.1: Микрофлора человека и животных и ее функции. — М.: ГРАНТЪ; 1998. — 288 с.

16. Bäckhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab. 2011;58 Suppl 2:44–52. doi: 10.1159/000328042.

17. Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–1238. doi: 10.1210/me.2014-1108.

18. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.

19. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228–231. doi: 10.1126/science.1179721.

20. Fleissner CK, Huebel N, Abd El-Bary MM, et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010;104(6):919–929. doi: 10.1017/S0007114510001303.

21. Lyte M. The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses. 2010;74(4):634–638. doi: 10.1016/j.mehy.2009.10.025.

22. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515–522. doi: 10.1016/j.alit.2017.07.010.

23. Wesemann DR, Nagler CR. The microbiome, timing, and barrier function in the context of allergic disease. Immunity. 2016;44(4):728–738. doi: 10.1016/j.immuni.2016.02.002.

24. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4578–4585. doi: 10.1073/pnas.1000081107.

25. Romano-Keeler J, Weitkamp J-H. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(0):189–195. doi: 10.1038/pr.2014.163.

26. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11. doi: 10.1016/j.siny.2011.10.001.

27. Mendz GL, Kaakoush NO, Quinlivan JA. Bacterial aetiological agents of intraamniotic infections and preterm birth in pregnant women. Front Cell Infect Microbiol. 2013;3:58. doi: 10.3389/fcimb.2013.00058.

28. Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119(3):e724–732. doi: 10.1542/peds.2006-1649.

29. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology. 2001;204(5):572–581. doi: 10.1078/0171-2985-00094.

30. Lelouard H, Fallet M, de Bovis B, et al. Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology. 2012;142(3):592–601.e3. doi: 10.1053/j.gastro.2011.11.039.

31. McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–349. doi: 10.1038/nature10863.

32. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.

33. Dingle BM, Liu Y, Fatheree NY, et al. FoxP3+ regulatory T cells attenuate experimental necrotizing enterocolitis. PLoS One. 2013;8(12):e82963. doi: 10.1371/journal.pone.0082963.

34. Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A. 2002;99(24):15451–15455. doi: 10.1073/pnas.202604299.

35. Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4(3):203–214. doi: 10.1017/S2040174412000712.

36. Макарова С.Г., Болдырева М.Н., Лаврова Т.Е., Петровская М.И. Кишечный микробиоценоз, пищевая толерантность и пищевая аллергия. Современное состояние проблемы // Вопросы современной педиатрии. — 2014. — Т.13. — №3. — С. 21–29. doi: 10.15690/vsp.v13i3.1024.

37. Huurre A, Kalliomaki M, Rautava S, et al. Mode of delivery — effects on gut microbiota and humoral immunity. Neonatology. 2008;93(4):236–240. doi: 10.1159/000111102.

38. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394. doi: 10.1503/cmaj.121189.

39. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11985. doi: 10.1073/pnas.1002601107.

40. Laubereau B, Filipiak-Pittroff B, von Berg A, et al. Caesarean section and gastrointestinal symptoms, atopic dermatitis and sensiti zation during the first year of life. Arch Dis Child. 2004;89:993–997. doi: 10.1136/adc.2003.043265.

41. Renz-Polster H, David MR, Buist AS, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy. 2005;35(11):1466–1472. doi: 10.1111/j.1365-2222.2005.02356.x.

42. Thavagnanam S., Fleming J., Bromley A., et al. A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy. 2008;38(4):629–633. doi: 10.1111/j.1365-2222.2007.02780.x.

43. Kristensen K, Henriksen L. Cesarean section and disease associated with immune function. J Allergy Clin Immunol. 2016;137(2):587–590. doi: 10.1016/j.jaci.2015.07.040.

44. Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80– 87. doi: 10.1111/j.1574-695X.2009.00553.x.

45. Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012;56(11):5811– 5820. doi: 10.1128/AAC.00789-12.

46. Greenwood C, Morrow AL, Lagomarcino AJ, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165(1):23–29. doi: 10.1016/j.jpeds.2014.01.010.

47. Moore AM, Ahmadi S, Patel S, et al. Gut resistome development in healthy twin pairs in the first year of life. Microbiome. 2015;3:27. doi: 10.1186/s40168-015-0090-9.

48. Hall MA, Cole CB, Smith SL, et al. Factors influencing the presence of faecal lactobacilli in early infancy. Arch Dis Child. 1990;65(2):185–188. doi: 10.1136/adc.65.2.185.

49. Jernberg C, Lofmark S, Edlund C. Long term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66. doi: 10.1038/ismej.2007.3.

50. Hanson LA, Korotkova M, Telemo E. Breast-feeding, infant formulas, and the immune system. Ann Allergy Asthma Immunol. 2003;90(6 Suppl 3):59–63.

51. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015;91(11):629–635. doi: 10.1016/j.earlhumdev.2015.08.013.

52. Martin R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. doi: 10.1016/j.jpeds.2003.09.028.

53. Jeurink PV, van Bergenhenegouwen J, Jiménez E, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30. doi: 10.3920/BM2012.0040.

54. Murgas Torrazza R, Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011;31 Suppl 1:S29–34. doi: 10.1038/jp.2010.172.

55. Heinig MJ. Host defense benefits of breastfeeding for the infant. Effect of breastfeeding duration and exclusivity. Pediatr Clin North Am. 2001;48(1):105–23, ix. doi: 10.1016/s0031-3955(05)70288-1.

56. Sharon M, Wang DM, Li M, et al. Host microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012;3(3):450–455. doi: 10.3945/an.112.001859.

57. Azad MB, Robertson B, Atakora F, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr. 2018;148(11):1733–1742. doi: 10.1093/jn/nxy175.

58. Turroni F, Milani C, van Sinderen D, Ventura M. Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes. 2011;2(3):183–189. doi: 10.4161/gmic.2.3.16105.

59. Sela DA, Chapman J, Adeuya A, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105(48):18964–18969. doi: 10.1073/pnas.0809584105.

60. Ayechu-Muruzabal V, van Stigt AH, Mank M, et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front Pediatr. 2018;6:239. doi: 10.3389/fped.2018.00239.

61. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2016;69 Suppl 2:42–51. doi: 10.1159/000452818.

62. Frei R, Lauener RP, Crameri R, O’Mahony L. Microbiota and dietary interactions — an update to the hygiene hypothesis? Allergy. 2012;67(4):S451–461. doi: 10.1111/j.1398-9995.2011.02783.x.

63. Russel FD, Burgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10(11):2535–2559. doi: 10.3390/md10112535.

64. Miliku K, Robertson B, Sharma AK, et al. Human milk oligosaccharide profiles and food sensitization among infants in the CHILD Study. Allergy. 2018;73(10):2070–2073. doi: 10.1111/all.13476.

65. Doherty AM, Lodge CJ, Dharmage SC, et al. Human milk oligosaccharides and associations with immune-mediated disease and infection in childhood: a systematic review. Front Pediatr. 2018;6:91. doi: 10.3389/fped.2018.00091.

66. Prescott SL, Noakes P, Chow BW, et al. Presymptomatic differences in Toll-like receptor function in infants who have allergy. J Allergy Clin Immunol. 2008;122(2):391–399, 399.e1–5. doi: 10.1016/j.jaci.2008.04.042.

67. Wang M, Karlsson C, Olsson C, et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol. 2008;121(1):129–134. doi: 10.1016/j.jaci.2007.09.011.

68. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–339. doi: 10.1016/j.chom.2007.09.013.

69. Noval Rivas M, Burton OT, Wise P, et al. Regulatory T-cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity. 2015;42(3):512–523. doi: 10.1016/j.immuni.2015.02.004.

70. Lee JB, Chen CY, Liu B, et al. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production,which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol. 2016;137(4):1216–1225.e5. doi: 10.1016/j.jaci.2015.09.019.

71. Cahenzli J, Köller Y, Wyss M, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe. 2013;14(5):559–570. doi: 10.1016/j.chom.2013.10.004.

72. Hill DA, Siracusa MC, Abt MC, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18(4):538–546. doi: 10.1038/nm.2657.

73. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–440, 440.e1–2. doi: 10.1016/j.jaci.2011.10.025.

74. Azad MB, Konya T, Guttman DS, et al.; CHILD Study Investigators. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015;45(3):632–643. doi: 10.1111/cea.12487.

75. Ismail IH, Oppedisano F, Joseph SJ, et al. Tang reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr Allergy Immunol. 2012;23(7):674–681. doi: 10.1111/j.1399-3038.2012.01328.x.

76. Sjögren YM, Jenmalm MC, Böttcher MF, et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009;39(4):518–526. doi: 10.1111/j.1365-2222.2008.03156.x.

77. Nylund L, Satokari R, Nikkilä J, et al. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol. 2013;13:12. doi: 10.1186/1471-2180-13-12.

78. Ling Z, Li Z, Liu X, et al. Altered fecal microbiota composition for food allergy in infants. Appl Environ Microbiol. 2014;80(8):2546– 2554. doi: 10.1128/AEM.00003-14.

79. McGuckin MA, Linden SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9(4):265–278. doi: 10.1038/nrmicro2538.

80. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63(4):559–566. doi: 10.1136/gutjnl-2012-303249.

81. Bunyavanich S, Shen N, Grishin A, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138(4):1122–1130. doi: 10.1016/j.jaci.2016.03.041.

82. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: Report of a Joint FAO WHO Expert Consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba; 2001. 34 p. Available from: www.fao.org.

83. Collins JK, Thornton G, Sullivan GO. Selection of probiotic strains for human application. Int Dairy J. 1998;8(5–6):487–490. doi: 10.1016/s0958-6946(98)00073-9.

84. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek. 2002;82(1–4):279– 289. doi: 10.1023/a:1020620607611.

85. Gorbach SL. Probiotics in the third millennium. Digest Liver Dis. 2002;34(Suppl 2):S2–S7. doi: 10.1016/s1590-8658(02)80155-4.

86. McFarland. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101(4):812–822. doi: 10.1111/j.1572-0241.2006.00465.x.

87. Корниенко Е.А. Современные принципы выбора пробиотиков // Детские инфекции. — 2007. — Т.6. — №3. — С. 64–69.

88. Rijkers GT, Bengmark S, Enck P, et al. Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr. 2010;140(3):671– 676. doi: 10.3945/jn.109.113779.

89. Hajavi J, Esmaeili SA, Varasteh AR, et al. The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol. 2019;234(3):2386– 2398. doi: 10.1002/jcp.27263.

90. Fiocchi A, Pawankar R, Cuello-Garcia C, et al. World Allergy Organization – McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics. World Allergy Organ J. 2015;8(1):4. doi: 10.1186/s40413-015-0055-2.

91. Boyle RJ, Ismail IH, Kivivuori S, et al. Lactobacillus GG treatment during pregnancy for the prevention of eczema: a randomized controlled trial. Allergy. 2011;66(4):509–516. doi: 10.1111/j.1398-9995.2010.02507.x.

92. Dotterud CK, Storro O, Johnsen R, Oien T. Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br J Dermatol. 2010;163(3):616–623. doi: 10.1111/j.1365-2133.2010.09889.x.

93. Huurre A, Laitinen K, Rautava S, et al. Impact of maternal atopy and probiotic supplementation during pregnancy on infant sensitization: a double-blind placebo-controlled study. Clin Exp Allergy. 2008;38(8):1342–1348. doi: 10.1111/j.1365-2222.2008.03008.x.

94. Ortiz-Andrellucchi A, Sanchez-Villegas A, Rodriguez-Gallego C, et al. Immunomodulatory effects of the intake of fermented milk with Lactobacillus casei DN114001 in lactating mothers and their children. Br J Nutr. 2008;100(4):834–845. doi: 10.1017/S0007114508959183.

95. Food allergy and anaphylaxis guidelines. EAACI. 2014. 278 p. [updated 2016 Oct 1; cited 2017 May 26]. Available from: http://www.eaaci.org/resources/guidelines/faa-guidelines.html.

96. Martín-Muñoz MF, Fortuni M, Caminoa M, et al. Anaphylactic reaction to probiotics. Cow’s milk and hen’s egg allergens in probiotic compounds. Pediatr Allergy Immunol. 2012;23(8):778– 784. doi: 10.1111/j.1399-3038.2012.01338.x.

97. Sharma G, Im SH. Probiotics as a potential immunomodulating pharmabiotics in allergic diseases: current status and future prospects. Allergy Asthma Immunol Res. 2018;10(6):575–590. doi: 10.4168/aair.2018.10.6.575.

98. Prakoeswa CR, Herwanto N, Prameswari R, et al. Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis. Benef Microbes. 2017;8(5):833–840. doi: 10.3920/BM2017.0011.

99. Zhang J, Ma JY, Li QH, et al. Lactobacillus rhamnosus GG induced protective effect on allergic airway inflammation is associated with gut microbiota. Cell Immunol. 2018;332:77–84. doi: 10.1016/j./cellimm.2018.08.002.

100. Das RR, Singh M, Shafiq N. Probiotics in treatment of allergic rhinitis. World Allergy Organ J. 2010;3(9):239–244. doi: 10.1097/WOX.0b013e3181f234d4.

101. Marcinkowska M, Zagorska A, Fajkis N, et al. Probiotic supplementation and topical application in the treatment of pediatric atopic dermatitis. Curr Pharm Biotechnol. 2018;19(10):827–838. doi: 10.2174/1389201019666181008113149.

102. Fassio F, Guagnini F. House dust mite-related respiratory allergies and probiotics: a narrative review. Clin Mol Allergy. 2018;16:15. doi: 10.1186/s12948-018-0092-9.

103. Cuello-Garcia CA, Fiocchi A, Pawankar R, et al. World Allergy Organization – McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics. World Allergy Organ J. 2016;9:10. doi: 10.1186/s40413-016-0102-7.

104. Agostoni C, Axelsson I, Goulet O, et al. Prebiotic oligosaccharides in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition.J Pediatr Gastroenterol Nutr. 2004;39(5):465– 73. doi: 10.1097/00005176-200411000-00003.

105. Gibson GR, Probert HM, Loo JV, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–275. doi: 10.1079/NRR200479.

106. Srinivasjois R, Rao S, Patole S. Prebiotic supplementation in preterm neonates: Updated systematic review and meta-analysis of randomised controlled trials. Clin Nutr. 2013;32(6):958–965. doi: 10.1016/j.clnu.2013.05.009.

107. Foolad N, Brezinski EA, Chase EP, Armstrong AW. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids JAMA Dermatol. 2013;149(3):350–355. doi: 10.1001/jamadermatol.2013.1495.

108. Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev. 2013;(3):CD006474. doi: 10.1002/14651858.CD006474.pub3.

109. Rao S, Srinivasjois R, Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med. 2009;163(8):755–764. doi: 10.1001/archpediatrics.2009.94.

110. Arslanoglu S, Moro GE, Schmitt J, et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr. 2008;138(6):1091–1095. doi: 10.1093/jn/138.6.1091.

111. Schouten B, Van Esch BC, Kormelink TG, et al. Nondigestible oligosaccharides reduce immunoglobulin free light-chain concentrations in infants at risk for allergy. Pediatr Allergy Immunol. 2011;22(5):537–542. doi: 10.1111/j.1399-3038.2010.01132.x.

112. Boyle RJ, Tang ML, Chiang WC, et al.; PATCH study investigators. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: a randomized controlled trial. Allergy. 2016;71(5):701–710. doi: 10.1111/all.12848.

113. Wopereis H, Sim K, Shaw A, et al. Intestinal microbiota in infants at high risk for allergy: effects of prebiotics and role in eczema development. J Allergy Clin Immunol. 2018;141(4):1334–1342. e5. doi: 10.1016/j.jaci.2017.05.054.

114. Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции // Педиатрия. Журнал им. Г.Н. Сперанского. — 2018. — Т.97. — №4. — С. 152–160. doi: 10.24110/0031-403x-2018-97-4-152-160.

115. West CE, Dzidic M, Prescott SL, Jenmalm MC. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int. 2017;66(4):529–538. doi: 10.1016/j.alit.2017.08.001.

116. Lundelin K, Poussa T, Salminen S, Isolauri E. Long-term safety and efficacy of perinatal probiotic intervention: evidence from a follow-up study of four randomized, double-blind, placebocontrolled trials. Pediatr Allergy Immunol. 2017;28(2):170–175. doi: 10.1111/pai.12675.


Рецензия

Для цитирования:


Макарова С.Г., Намазова-Баранова Л.С., Ерешко О.А., Ясаков Д.С., Садчиков П.Е. Кишечная микробиота и аллергия. Про- и пребиотики в профилактике и лечении аллергических заболеваний. Педиатрическая фармакология. 2019;16(1):7-18. https://doi.org/10.15690/pf.v16i1.1999

For citation:


Makarova S.G., Namazova-Baranova L.S., Ereshko O.A., Yasakov D.S., Sadchikov P.E. Intestinal Microbiota and Allergy. Probiotics and Prebiotics in Prevention and Treatment of Allergic Diseases. Pediatric pharmacology. 2019;16(1):7-18. (In Russ.) https://doi.org/10.15690/pf.v16i1.1999

Просмотров: 3237


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)