Development of Medical Decision Making Support System
https://doi.org/10.15690/pf.v22i5.2958
Abstract
This article is devoted to the development of an intelligence system for medical decision making support (MDMSS) designed for reducing the burden on doctors and increase the differential diagnosis accuracy. Hybrid model, as a key feature, is suggested to be capable to analyse unstructured clinical history in Russian language. The system architecture, including data base structure, text preprocessing module, hybrid symptom extraction mechanism (with linguistic rules and semantic analysis based on BERT neural network model), is described.
Keywords
About the Authors
Nikita S. ShilkoRussian Federation
Nikita S. Shilko, MD
10, Fotievoy Str., building 1, Moscow, 119333
Disclosure of interest:
Not declared.
George A. Karkashadze
Russian Federation
George A. Karkashadze, MD, PhD
Moscow
Disclosure of interest:
Not declared.
Marina V. Fedoseenko
Russian Federation
Marina V. Fedoseenko, MD, PhD, Associate Professor
Moscow
Disclosure of interest:
Not declared.
Anastasiya N. Dudina
Russian Federation
Anastasiya N. Dudina, MD
Moscow
Disclosure of interest:
Not declared.
Tatiana A. Kaliuzhnaia
Russian Federation
Tatiana A. Kaliuzhnaia, MD, PhD
Moscow
Disclosure of interest:
Not declared.
Svetlana V. Tolstova
Russian Federation
Svetlana V. Tolstova, MD
Moscow
Disclosure of interest:
Not declared.
Arevaluis M. Selvyan
Russian Federation
Arevaluis M. Selvyan, MD
Moscow
Disclosure of interest:
Not declared.
Tatiana E. Privalova
Russian Federation
Tatiana E. Privalova, MD, PhD, Associate Professor
Moscow
Disclosure of interest:
Not declared.
Elena V. Kaytukova
Russian Federation
Elena V. Kaytukova, MD, PhD, Associate Professor
Moscow
Disclosure of interest:
Not declared.
Elena A. Vishneva
Russian Federation
Elena A. Vishneva, MD, PhD, Professor
Moscow
Disclosure of interest:
Not declared.
Leyla S. Namazova-Baranova
Russian Federation
Leyla S. Namazova-Baranova, MD, PhD, Professor, Academician of the RAS
Moscow
Shenzhen
Disclosure of interest:
Not declared.
References
1. Smyshlyaev AV, Melnikov YuYu, Sadovskaya MA. The results of the project on the introduction of lean-technologies and a process-oriented approach in the management of a medical organization that provides primary healthcare in the Russian Federation. Glavnyi vrach Uga Russia. 2020;(2):15–18. (In Russ).
2. Decree of the President of the Russian Federation dated May 07, 2024 No. 309 “O natsional’nykh tselyakh razvitiya Rossiiskoi Federatsii na period do 2030 goda i na perspektivu do 2036 goda”. (In Russ).Доступно по: http://kremlin.ru/events/president/news/73986. Ссылка активна на 30.08.2025.
3. Decree of the President of the Russian Federation dated June 06, 2019 No. 254 “O Strategii razvitiya zdravookhraneniya v Rossiiskoi Federatsii na period do 2025 goda”. (In Russ). Доступно по: http://kremlin.ru/acts/bank/44326. Ссылка активна на 30.08.2025.
4. Improving Diagnosis in Health Care. Balogh EP, Miller BT, Ball JR, eds. Washington (DC): National Academies Press (US); 2015. 472 p. doi: https://doi.org/10.17226/21794
5. Makhambetchin MM, Lokhvitskiy SV, Turgunov YM, Shakeyev KT. Medical errors — causes and contradictions. Klinicheskaya meditsina. 2021;99(7-8):469–475. (In Russ). doi: https://doi.org/10.30629/0023-2149-2021-99-7-8-469-475.
6. Kwan JL, Lo L, Ferguson J, et al. Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials. BMJ. 2020;370:m3216. doi: https://doi.org/10.1136/bmj.m3216
7. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–243. doi: https://doi.org/10.1136/svn-2017-000101
8. Wang X, Zhao J, Marostica E, et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature. 2024;634(8035):970–978. doi: https://doi.org/10.1038/s41586-024-07894-z
9. Yao S, Wang R, Qian K, Zhang Y. Real world study for the concordance between IBM Watson for Oncology and clinical practice in advanced non-small cell lung cancer patients at a lung cancer center in China. Thoracic Cancer. 2020;11(5):1265–1270. doi: https://doi.org/10.1111/1759-7714.13391
10. Sagheb E, Wi CI, King KS, et al. AI model for predicting asthma prognosis in children. J Allergy Clin Immunol Glob. 2025;4(2):100429. doi: https://doi.org/10.1016/j.jacig.2025.100429
11. Jayaraman P, Desman J, Sabounchi M, et al. A Primer on Reinforcement Learning in Medicine for Clinicians. NPJ Digital Medicine. 2024;7(1):337. doi: https://doi.org/10.1038/s41746-024-01316-0
12. Gogoberidze YT, Klassen VI, Natenzon MY, et al. PhthisisBioMed artificial medical intelligence: software for automated analysis of digital chest x-ray/fluorograms. Sovrem Tehnologii Med. 2023;15(4):5. doi: https://doi.org/10.17691/stm2023.15.4.01
13. Uskova KA, Garanina OE, Ukharov AO, et al. Opportunities for optimizing skin tumor screening. Meditsinskiy almanakh. 2024;(1):69–75. (In Russ).
14. Doan Dyk Kha. Algoritmy analiza informatsii i podderzhki prinyatiya reshenii v meditsinskikh tekhnologicheskikh protsessakh. [abstract of dissertation]. Ryazan; 2018. 24 p. (In Russ).
15. Zarubina TV, Pashkina ES. Prospects of use of the systematized nomenclature of medical terms (SNOMED CT) in Russia. Medical Doctor and IT. 2012;(4):4– 14. (In Russ).
16. Lin C, Hsu CJ, Lou YS, et al. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. J Med Internet Res. 2017;19(11):380. doi: https://doi.org/10.2196/jmir.8344
17. Bechman M. rapidfuzz/RapidFuzz: Release 3.13.0. Zenodo. 2025. doi: https://doi.org/10.5281/zenodo.15133267
18. Kolesnikova A, Kuratov Y, Konovalov V, Burtsev M. Knowledge Distillation of Russian Language Models with Reduction of Vocabulary. arXiv. 2022. doi: https://doi.org/10.48550/ARXIV.2205.02340.
Review
For citations:
Shilko N.S., Karkashadze G.A., Fedoseenko M.V., Dudina A.N., Kaliuzhnaia T.A., Tolstova S.V., Selvyan A.M., Privalova T.E., Kaytukova E.V., Vishneva E.A., Namazova-Baranova L.S. Development of Medical Decision Making Support System. Pediatric pharmacology. 2025;22(5):573-579. (In Russ.) https://doi.org/10.15690/pf.v22i5.2958



































