Asthma Management Current Guidelines
https://doi.org/10.15690/pf.v22i4.2938
Abstract
The clinical guidelines for asthma provide a systematic approach to the diagnosis and treatment of this chronic inflammatory disease of the respiratory tract. The article provides a detailed description of current diagnostic methods, including history taking, physical examination, pulmonary function tests, and inflammation measurements. The focus is on individualizing therapy based on the severity and control of the disease, as well as the presence of comorbidities. The authors emphasize the importance of using inhaled corticosteroids as the foundation for long-term control and the use of fast-acting bronchodilators for symptomatic relief. The guidelines also cover non-pharmacological measures, such as avoiding allergens, lifestyle changes, and teaching patients how to properly use inhalers and monitor their symptoms. An important aspect of the guidelines is the “supportive therapy” strategy and the plan of action for exacerbations, which helps to respond promptly and reduce the risk of severe conditions. The guidelines emphasize the need for regular monitoring of treatment effectiveness and the adjustment of therapy based on the progression of the disease. The goal of these clinical guidelines is to improve the quality of care for patients with asthma, reduce the frequency of exacerbations, and enhance their quality of life through the implementation of evidencebased diagnostic and treatment methods.
About the Authors
Sergey N. AvdeevRussian Federation
Moscow
Disclosure of interest:
Not declared.
Zaurbek R. Aysanov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Vladimir V. Arkhipov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Nataliya G. Astaphieva
Russian Federation
Saratov
Disclosure of interest:
Not declared.
A. A. Baranov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Andrey S. Belevskiy
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Igor V. Bukhtiyarov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Olga S. Vasilyeva
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Elena A. Vishneva
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Nataliya A. Geppe
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Irina V. Demko
Russian Federation
Krasnoyarsk
Disclosure of interest:
Not declared.
Aleksander V. Emel’yanov
Russian Federation
Saint Petersburg
Disclosure of interest:
Not declared.
Galina L. Ignatova
Russian Federation
Chelyabinsk
Disclosure of interest:
Not declared.
Nataliya I. Il’ina
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Nadezhda P. Knyazheskaya
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Oksana M. Kurbacheva
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Yulia G. Levina
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Igor V. Leshchenko
Russian Federation
Yekaterinburg
Disclosure of interest:
Not declared.
Aleksander B. Malakhov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Nataliya N. Meshcheryakova
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Leyla S. Namazova-Baranova
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Nataliya M. Nenasheva
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Gennadiy A. Novik
Russian Federation
Saint Petersburg
Disclosure of interest:
Not declared.
Kseniya S. Pavlova
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Aleksander N. Pampura
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Liliya R. Selimzyanova
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Leonid A. Strizhakov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Dariya S. Fomina
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Musa R. Haitov
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Aleksander G. Chuchalin
Russian Federation
Moscow
Disclosure of interest:
Not declared.
Ivan N. Shishimorov
Russian Federation
Volgograd
Disclosure of interest:
Not declared.
Lubov A. Shpagina
Russian Federation
Novosibirsk
Disclosure of interest:
Not declared.
Kamilla E. Efendieva
Russian Federation
Moscow
Disclosure of interest:
Not declared.
References
1. Ray A, Camiolo M, Fitzpatrick A, et al. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev. 2020;100(3):983–1017. doi: https://doi.org/10.1152/PHYSREV.00023.2019
2. Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–323. doi: https://doi.org/10.1164/RCCM.200906-0896OC
3. Abbafati C, Abbas KM, Abbasi M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–1222. doi: https://doi.org/10.1016/S0140-6736(20)30925-9
4. Global strategy for asthma management and prevention. Global Initiative for Asthma (GINA); 2020. 209 p. Available online: https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-fullreport_-final-_wms.pdf. Accessed on June 26, 2025.
5. Chuchalin AG, Khaltaev N, Antonov NS, et al. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J Chron Obstruct Pulmon Dis. 2014;9:963–974. doi: https://doi.org/10.2147/COPD.S67283
6. Natsional’naya programma “Bronkhial’naya astma u detei. Strategiya lecheniya i profilaktika”. 4th edn. Moscow; 2012. 182 p. (In Russ).
7. Most Recent Asthma Data. In: CDC. U.S. Centers for Disease Control and Prevention: Official Website. Retrieved February 9, 2024. Available online: https://www.cdc.gov/asthma/most_recent_data.htm. Accessed on June 18, 2025.
8. Medical statistics. In: RIH. Russian research Institute of Health: Official Website. (In Russ). Доступно по: https://mednet.ru/napravleniya/mediczinskaya-statistika. Ссылка активна на 18.06.2025.
9. Krahn M, Berka C, Langlois P, Detsky AS. Direct and indirect costs of asthma in Canada, 1990. CMAJ. 1996;154(6):821–831.
10. Braman SS, Kaemmerlen JT. Intensive Care of Status Asthmaticus: A 10-Year Experience. JAMA. 1990;264(3):366–368. doi: https://doi.org/10.1001/JAMA.1990.03450030090038
11. Weber EJ, Silverman RA, Callaham ML, et al. A prospective multicenter study of factors associated with hospital admission among adults with acute asthma. Am J Med. 2002;113(5): 371–378. doi: https://doi.org/10.1016/S0002-9343(02)01242-1
12. Salmeron S, Liard R, Elkharrat D, et al. Asthma severity and adequacy of management in accident and emergency departments in France: A prospective study. Lancet. 2001;358(9282):629–635. doi: https://doi.org/10.1016/S0140-6736(01)05779-8
13. Krishnan V, Diette GB, Rand CS, et al. Mortality in patients hospitalized for asthma exacerbations in the United States. Am J Respir Crit Care Med. 2006;174(6):633–638. doi: https://doi.org/10.1164/RCCM.200601-007OC
14. Nenasheva NM. Klinicheskie fenotipy atopicheskoi bronkhial’noi astmy: diagnostika i lechenie. Palmarium Academic Publishing; 2012. 319 p. (In Russ).
15. Pearce N, Pekkanen J, Beasley R. How much asthma is really attributable to atopy? Thorax. 1999;54(3):268–272. doi: https://doi.org/10.1136/THX.54.3.268
16. Reddel HK, Taylor DR, Bateman ED, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1): 59–99. doi: https://doi.org/10.1164/RCCM.200801-060ST
17. Taylor DR, Bateman ED, Boulet LP, et al. A new perspective on concepts of asthma severity and control. Eur Respir J. 2008;32(3): 545–554. doi: https://doi.org/10.1183/09031936.00155307
18. Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–373. doi: https://doi.org/10.1183/09031936.00202013
19. Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA); 2024. 261 p. Available online: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf. Accessed on June 19, 2024.
20. Barnes PJ, Szefler SJ, Reddel HK, Chipps BE. Symptoms and perception of airway obstruction in asthmatic patients: Clinical implications for use of reliever medications. J Allergy Clin Immunol. 2029;144(5):1180–1186. doi: https://doi.org/10.1016/J.JACI.2019.06.040
21. Killian KJ, Watson R, Otis J, et al. Symptom perception during acute bronchoconstriction. Am J Respir Crit Care Med. 2000;162(2 Pt 1):490–496. doi: https://doi.org/10.1164/AJRCCM.162.2.9905079
22. Avdeev SN. Dykhatel’naya nedostatochnost’. Atmosfera. Pul’monologiya i allergologiya. 2004;(1):21–27. (In Russ).
23. Goryachkina LA, Nenasheva NM, Totikova MCh, Shmeleva NV. Features of bronchial asthma in male adolescents. Pulmonologiya. 2008;(2):15–19. (In Russ). doi: https://doi.org/10.18093/0869-0189-2008-0-2-15-19
24. Shalnova OA, Kirillov MM, Orlova MM, et al. Lung diseases in called-up aged patients. Pulmonologiya. 2005;(2):57–62. (In Russ). doi: https://doi.org/10.18093/0869-0189-2005-0-2-57-62
25. Zholonds NN, Voronina NV, Mamrovska TP, et al. Bronchial asthma in teenagers and youths of call-up age. Far Eastern Medical Journal. 2011;(3):57–59. (In Russ).
26. Astafieva NG. Bronchial asthma in adolescents. Allergology. 2005;(2):41–49. (In Russ).
27. Emelyanov AV. Features of asthma in elderly patients. RMJ. 2016;(16):1102–1107. (In Russ). doi: https://doi.org/10.18565/PHARMATECA.2020.5.85-94
28. Mellis C. Respiratory noises: how useful are they clinically? Pediatr Clin North Am. 2029;56(1):1–17. doi: https://doi.org/10.1016/J.PCL.2008.10.003
29. Louis R, Satia I, Ojanguren I, et al. European Respiratory Society Guidelines for the Diagnosis of Asthma in Adults. Eur Respir J. 2022;60(3):2101585. doi: https://doi.org/10.1183/13993003.01585-2021
30. Sung L, Osmond MH, Klassen TP. Randomized, controlled trial of inhaled budesonide as an adjunct to oral prednisone in acute asthma. Acad Emerg Med. 1998;5(3):209–213. doi: https://doi.org/10.1111/J.1553-2712.1998.TB02614.X
31. Pollart SM, Compton RM, Elward KS. Management of Acute Asthma Exacerbations. Am Fam Physician. 2011;84(1):40–47. doi: https://www.aafp.org/pubs/afp/issues/2011/0701/p40.html
32. Volchkov VA, Titova ON, Chernyi OM. Klinicheskie rekomendatsii (protokol) po okazaniyu skoroi meditsinskoi pomoshchi pri ostroi dykhatel’noi nedostatochnosti. In: Skoraya meditsinskaya pomoshch’. Klinicheskie rekomendatsii. Bagnenko SF, ed. Moscow: GEOTAR-Media; 2022. pp. 132–149. (In Russ).]
33. Vishneva EA, Namazova-Baranova LS, Alekseeva AA, et al. Actual Surveillance of Children with Bronchial Asthma. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2017;14(6):443–458. (In Russ). doi: https://doi.org/10.15690/pf.v14i6.1828
34. Thomas M, Kay S, Pike J, et al. The Asthma Control Test (ACT) as a predictor of GINA guideline-defined asthma control: analysis of a multinational cross-sectional survey. Prim Care Respir J. 2009; 18(1):41–49. doi: https://doi.org/10.4104/PCRJ.2009.00010
35. Bousquet J, Boulet LP, Peters MJ, et al. Budesonide/formoterol for maintenance and relief in uncontrolled asthma vs. high-dose salmeterol/fluticasone. Respir Med. 2007;101(12):2437–2446. doi: https://doi.org/10.1016/J.RMED.2007.07.014
36. Buhl R, Kuna P, Peters MJ, et al. The effect of budesonide/ formoterol maintenance and reliever therapy on the risk of severe asthma exacerbations following episodes of high reliever use: an exploratory analysis of two randomised, controlled studies with comparisons to standard therapy. Respir Res. 2012;13(1):59. doi: https://doi.org/10.1186/1465-9921-13-59
37. Albers FC, Licskai C, Chanez P, et al. Baseline blood eosinophil count as a predictor of treatment response to the licensed dose of mepolizumab in severe eosinophilic asthma. Respir Med. 2019;159:105806. doi: https://doi.org/10.1016/J.RMED.2019.105806
38. Bush A. Management of asthma in children. Minerva Pediatr. 2018;70(5):444–457. doi: https://doi.org/10.23736/S0026-4946.18.05351-3
39. Price DB, Rigazio A, Campbell JD, et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med. 2015;3(11):849–858. doi: https://doi.org/10.1016/S2213-2600(15)00367-7
40. Kerkhof M, Tran TN, van den Berge M, et al. Association between blood eosinophil count and risk of readmission for patients with asthma: Historical cohort study. PloS One. 2018;13(7):e0201143. doi: https://doi.org/10.1371/JOURNAL.PONE.0201143
41. Xepapadaki P, Adachi Y, Pozo Beltrán CF, et al. Utility of biomarkers in the diagnosis and monitoring of asthmatic children. World Allergy Organ J. 2022;16(1):100727. doi: https://doi.org/10.1016/J.WAOJOU.2022.100727
42. Bonato M, Bazzan E, Snijders D, et al. Blood eosinophils relate to atopy and not to tissue eosinophils in wheezing children. Allergy. 2020;75(6):1497–1501. doi: https://doi.org/10.1111/ALL.14170
43. Diagnosis and Management of Difficult-to-treat and Severe Asthma in Adolescent and adult patients. Global Initiative for Asthma (GINA); 2024. 35 p. Available online: https://ginasthma.org/wp-content/uploads/2024/11/GINA-Severe-Asthma-Guide-2024-WEB-WMS.pdf. Accessed on June 20, 2024.
44. Smith AD, Cowan JO, Filsell S, et al. Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests. Am J Respir Criti Care Med. 2004;169(4): 473–478. doi: https://doi.org/10.1164/RCCM.200310-1376OC
45. Fabbri LM, Romagnoli M, Corbetta L, et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(3):418–424. doi: https://doi.org/10.1164/RCCM.200203-183OC
46. Korevaar DA, Westerhof GA, Wang J, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(4):290–300. doi: https://doi.org/10.1016/S2213-2600(15)00050-8
47. Barcellos VA, dos Santos VCH, Moreira MÂF, Dalcin PTR. Asthma control and sputum eosinophils in adult patients: a cross-sectional study in southern Brazil. Sci Rep. 2023;13(1):21464. doi: https://doi.org/10.1038/S41598-023-48381-1
48. Talini D, Novelli F, Bacci E, et al. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: results of an observational study. BMJ Open. 2015;5(1):e005748. doi: https://doi.org/10.1136/BMJOPEN-2014-005748
49. Parameswaran K, Leigh R, Hargreave FE. Sputum eosinophil count to assess compliance with corticosteroid therapy in asthma. J Allergy Clin Immunol. 1999;104(2 Pt 1): 502–503. doi: https://doi.org/10.1016/S0091-6749(99)70402-1
50. Atkinson CE, Schworer SA, Matthews K, et al. Omalizumab is associated with improved asthma outcomes in children and adolescents with serum immunoglobulin E above dosing guidelines. J Allergy Clin Immunol Pract. 2022;10(10):2756–2757.e1. doi: https://doi.org/10.1016/J.JAIP.2022.06.041
51. Hew M, Gillman A, Sutherland M, et al. Real-life effectiveness of omalizumab in severe allergic asthma above the recommended dosing range criteria. Clin Exp Allergy. 2016;46(11):1407–1415. doi: https://doi.org/10.1111/CEA.12774
52. Allergologiya i immunologiya: National guide. Khaitov RM, Il’ina NI, et al. Moscow: GEOTAR-Media; 2009. 656 p. (In Russ).
53. Cox L. Overview of serological-specific IgE antibody testing in children. Curr Allergy Asthma Rep. 2011;11(6):447–453. doi: https://doi.org/10.1007/S11882-011-0226-3
54. Ansotegui IJ, Melioli G, Canonica GW, et al. A WAO — ARIA — GA2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J. 2020;13(2):100091. doi: https://doi.org/10.1016/J.WAOJOU.2019.100091
55. Azad MB, Chan-Yeung M, Chan ES, et al. Wheezing Patterns in Early Childhood and the Risk of Respiratory and Allergic Disease in Adolescence. JAMA Pediatr. 2016;170(4):393–395. doi: https://doi.org/10.1001/JAMAPEDIATRICS.2015.4127
56. Nowak RM, Tomlanovich MC, Sarkar DD, et al. Arterial blood gases and pulmonary function testing in acute bronchial asthma. Predicting patient outcomes. JAMA. 1983;249(15):2043–2046.
57. Pervichnye immunodefitsity s preimushchestvennoi nedostatochnost’yu sinteza antitel: Clinical guidelines. Russian Association of Allergists and Clinical Immunologists; National Association of Experts in Primary Immunodeficiencies. Ministry of Health of the Russian Federation; 2024. 69 p. (In Russ).]Доступно по: https://cr.minzdrav.gov.ru/schema/view-cr/735_1. Ссылка активна на 21.06.2025.
58. Chuchalin AG. Disease associated with immunoglobulin G. Terapevticheskii arkhiv. 2018;90(3):4–9. (In Russ). doi: https://doi.org/10.26442/terarkh20189034-9
59. Latysheva TV, Medunitsyna EN. Infektsionnye zabolevaniya dykhatel’nogo trakta u bol’nykh s bronkhial’noi astmoi. RMJ. 2007;(7):60. (In Russ).
60. Liu XX, Zhu XM, Miao Q, et al. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–332. doi: https://doi.org/10.1159/000365892
61. Seelig E, Meyer S, Timper K, et al. Metformin prevents metabolic side effects during systemic glucocorticoid treatment. Eur J Endocrinol. 2017;176(3):349–358. doi: https://doi.org/10.1530/EJE-16-0653
62. Mishra A, Ugra D, Kumar U. Study of spirometry parameters in suspected asthmatic children in a tertiary care hospital. Int J Contemp Pediatric. 2020;7(5):1023. doi: https://doi.org/10.18203/2349-3291.IJCP20201631
63. Gaillard EA, Kuehni CE, Turner S, et al. European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5–16 years. Eur Resp J. 2021;58(5):2004173. doi: https://doi.org/10.1183/13993003.04173-2020
64. Singh D, Garcia G, Maneechotesuwan K, et al. New Versus Old: The Impact of Changing Patterns of Inhaled Corticosteroid Prescribing and Dosing Regimens in Asthma Management. Adv Ther. 2022;39(5): 1895–1914. doi: https://doi.org/10.1007/s12325-022-02092-7
65. Vogelmeier C, Naya I, Ekelund J. Budesonide/formoterol maintenance and reliever therapy in Asian patients (aged >16 years) with asthma: a sub-analysis of the COSMOS study. Clin Drug Investig. 2012;32(7):439–449. doi: https://doi.org/10.2165/11598840-000000000-00000
66. Papanicolaou A, Wang H, Satzke C, et al. Novel Therapies for Pneumonia-Associated Severe Asthma Phenotypes. Trends Mol Med. 2020;26(11):1047–1058. doi: https://doi.org/10.1016/J.MOLMED.2020.07.006
67. Beketova TV, Volkov MYu. The 2015 International guidelines for the diagnosis and treatment of eosinophilic granulomatosis with polyangiitis. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2016;54(2):129–137. (In Russ). doi: https://doi.org/10.14412/1995-4484-2016-129-137
68. Lanham J, Elkon K, Pusey C, Hughes G. Systemic vasculitis with asthma and eosinophilia: a clinical approach to the Churg-Strauss syndrome. Medicine (Baltimore). 1984;63(2):65–81. doi: https://doi.org/10.1097/00005792-198403000-00001
69. Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130(3):607–612. doi: https://doi.org/10.1016/j.jaci.2012.02.019
70. Taylor MR, Keane CT, O’Connor P, et al. The expanded spectrum of toxocaral disease. Lancet. 1998;1(8587):692–695. doi: https://doi.org/10.1016/S0140-6736(88)91486-9
71. Siddiqui AA, Berk SL. Diagnosis of Strongyloides stercoralis infection. Clin Infect Dis. 2001;33(7):1040–1047. doi: https://doi.org/10.1086/322707
72. Agarwal R. Allergic bronchopulmonary aspergillosis. Chest. 2009;135(3):805–826. doi: https://doi.org/10.1378/chest.08-2586
73. Gotlib J. World Health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90(11):1077–1189. doi: https://doi.org/10.1002/ajh.24196
74. Emmi G, Silvestri E, Marconi R, et al. First report of FIP1L1- PDGFRα-positive eosinophilic granulomatosis with polyangiitis. Rheumatology (Oxford). 2015;54(9):1751–1753. doi: https://doi.org/10.1093/rheumatology/kev242
75. Alzghoul BN, Reddy R, Chizinga M, et al. Pulmonary Embolism in Acute Asthma Exacerbation: Clinical Characteristics, Prediction Model and Hospital Outcomes. Lung. 2020;198(4):661–669. doi: https://doi.org/10.1007/s00408-020-00363-0
76. Ayuk AC, Uwaezuoke SN, Ndukwu CI, et al. Spirometry in Asthma Care: A Review of the Trends and Challenges in Pediatric Practice. Clin Med Insights Pediatr. 2017;11:117955651772067. doi: https://doi.org/10.1177/1179556517720675
77. Chhabra SK. Clinical application of spirometry in asthma: Why, when and how often? Lung India. 2015;32(6):635–637. doi: https://doi.org/10.4103/0970-2113.168139
78. Gallucci M, Carbonara P, Pacilli AMG, et al. Use of Symptoms Scores, Spirometry, and Other Pulmonary Function Testing for Asthma Monitoring. Front Pediat. 2019;7:54. doi: https://doi.org/10.3389/FPED.2019.00054
79. Spirometriya: Guidelines. Russian Respiratory Society; Russian Association of Functional Diagnostics Specialists; Russian Scientific Medical Society of Therapists. 2023. 63 p. (In Russ). Доступно по: https://spulmo.ru/upload/kr/Spirometria_2023.pdf. Ссылка активна на 22.06.2025.
80. Kameneva MYu, Cherniak AV, Aisanov ZR, et al. Spirometry: national guidelines for the testing and interpretation of results. Pulmonologiya. 2023;33(3):307–340. (In Russ). doi: https://doi.org/10.18093/08690189-2023-33-3-307-340
81. Chuchalin AG, Aysanov ZR, Chikina SYu, et al. Federal guidelines of Russian Respiratory Society on spirometry. Pulmonologiya. 2014;(6):11–24. (In Russ). doi: https://doi.org/10.18093/0869-0189-2014-0-6-11-24
82. Graham BL, Steenbruggen I, Barjaktarevic IZ, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J R Crit Care Med. 2019;200(8):E70–E88. doi: https://doi.org/10.1164/RCCM.201908-1590ST
83. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Resp J. 2005;26(5):948–968. doi: https://doi.org/10.1183/09031936.05.00035205
84. Shipp CL, Gergen PJ, Gern JE, et al. Asthma Management in Children. J Allergy Clin Immunol Pract. 2023;11(1):9–18. doi: https://doi.org/10.1016/J.JAIP.2022.10.031
85. Martin J, Townshend J, Brodlie M. Diagnosis and management of asthma in children. BMJ Paediatr Open. 2022;6(1):e001277. doi: https://doi.org/10.1136/BMJPO-2021-001277
86. Mishra A, Ugra D, Kumar U. Study of spirometry parameters in suspected asthmatic children in a tertiary care hospital. Int J Contemp Pediatric. 2020;7(5):1023. doi: https://doi.org/10.18203/2349-3291.IJCP20201631
87. Reddel H, Ware S, Marks G, et al. Differences between asthma exacerbations and poor asthma control. Lancet. 1999;353(9150):364–369. doi: https://doi.org/10.1016/S0140-6736(98)06128-5
88. Kurbacheva OM, Pavlova KS. Federal Clinical Recommendations. Allergen-specific Immunotherapy. Russian Journal of Allergy. 2016;(4-5):55–61. (In Russ).
89. Chuchalin A, Chernyak A, Chikina S, et al. Funktsional’naya diagnostika v pul’monologii: A practical guide. Moscow: Atmosphere; 2009. 192 p. (In Russ).
90. Tan WC, Vollmer WM, Lamprecht B, et al. Worldwide patterns of bronchodilator responsiveness: results from the Burden of Obstructive Lung Disease study. Thorax. 2012;67(8):718–726. doi: https://doi.org/10.1136/THORAXJNL-2011-201445
91. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2020;161(1):309–329. doi: https://doi.org/10.1164/AJRCCM.161.1.ATS11-99
92. Hallstrand TS, Leuppi JD, Joos G, et al. ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J. 2018;52(5):1801033. doi: https://doi.org/10.1183/13993003.01033-2018
93. Krasnovskiy AL, Grigoriyev SP, Aleksandrov OV, et al. The provocation broncho-constricting tests in modern pulmonological practice. RMJ. 2014;(4):41–46. (In Russ). doi: https://doi.org/10.17816/rmj38189
94. Ora J, De Marco P, Gabriele M, et al. Exercise-Induced Asthma: Managing Respiratory Issues in Athletes. J Funct Morphol Kinesiol. 2024;9(1):15. doi: https://doi.org/10.3390/jfmk9010015
95. Swartz E, Lang D. When should a methacholine challenge be ordered for a patient with suspected asthma? Cleve Clin J Med. 2008;75(1):37–40. doi: https://doi.org/10.3949/CCJM.75.1.37
96. Dell SD, Bola SS, Foty RG, et al. Provocative dose of methacholine causing a 20% drop in FEV1 should be used to interpret methacholine challenge tests with modern nebulizers. Ann Am Thorac Soc. 2015;12(3):357–363. doi: https://doi.org/10.1513/AnnalsATS.201409-433OC
97. Skorokhodkina OV, Luntsov AV. Challenge tests in clinical diagnostics of bronchial asthma. The Bulletin of Contemporary Clinical Medicine. 2012;5(2):24–29. (In Russ).
98. Kussek P, Rosario Filho NA, Cat M. Bronchial hyperresponsiveness to hypertonic saline challenge in children and adolescents. J Bras Pneumol. 2006;32(2):195–201. doi: https://doi.org/10.1590/S1806-37132006000300004
99. Coates AL, Wanger J, Cockcroft DW, et al. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J. 2017;49(5):1601526. doi: https://doi.org/10.1183/13993003.01526-2016
100. Ramsdale EH, Morris MM, Roberts RS, Hargreave FE. Asymptomatic bronchial hyperresponsiveness in rhinitis. J Allergy Clin Immunol. 1985;75(5):573–577. doi: https://doi.org/10.1016/0091-6749(85)90032-6
101. Ramsdale EH, Morris MM, Roberts RS, Hargreave FE. Bronchial responsiveness to methacholine in chronic bronchitis: Relationship to airflow obstruction and cold air responsiveness. Thorax. 1984;39(12):912–918. doi: https://doi.org/10.1136/thx.39.12.912
102. van Haren EHJ, Lammers JWJ, Festen J, et al. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adult patients with cystic fibrosis. Respir Med. 1995;89(3):209–214. doi: https://doi.org/10.1016/0954-6111(95)90249-X
103. Joshi S, Powell T, Watkins WJ, et al. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J Pediatr. 2013;162(4):813–818.e1. doi: https://doi.org/10.1016/J.JPEDS.2012.09.040
104. Nowak RM, Pensler MI, Sarkar DD, et al. Comparison of peak expiratory flow and FEV1 admission criteria for acute bronchial asthma. Ann Emerg Med. 1982;11(2):64–69. doi: https://doi.org/10.1016/S0196-0644(82)80298-9
105. Reddel HK, Marks GB, Jenkins CR. When can personal best peak flow be determined for asthma action plans? Thorax. 2004;59(11): 922–924. doi: https://doi.org/10.1136/THX.2004.023077
106. Lukina OF, Fastovskaya AM, Khan MA, et al. Pulse oscillometry in estimation of breath disorders in children with chronic lung diseases. Voprosy diagnostiki v pediatrii. 2010;2(3):24–28. (In Russ).
107. Lukina OF. Pulmonary Function Tests in Children and Adolescents. Prakticheskaya pulmonologiya. 2017;(4):39–43. (In Russ).
108. Kim HY, Shin YH, Jung DW, et al. Resistance and reactance in oscillation lung function reflect basal lung function and bronchial hyperresponsiveness respectively. Respirology. 2009;14(7):1035– 1041. doi: https://doi.org/10.1111/J.1440-1843.2009.01605.X
109. Konstantinou GN, Xepapadaki P, Papadopoulos NG, Manousakis E. Virus-Induced Asthma/Wheeze in Preschool Children: Longitudinal Assessment of Airflow Limitation Using Impulse Oscillometry. J Clin Med. 2019;8(9):1475. doi: https://doi.org/10.3390/JCM8091475
110. Rupani H, Kent BD. Using Fractional Exhaled Nitric Oxide Measurement in Clinical Asthma Management. Chest. 2022;161(4):906–917. doi: https://doi.org/10.1016/J.CHEST.2021.10.015
111. Di Cicco M, Peroni DG, Ragazzo V, Comberiati P. Application of exhaled nitric oxide (FeNO) in pediatric asthma. Curr Opin Allergy Clin Immunol. 2021;21(2):151–158. doi: https://doi.org/10.1097/ACI.0000000000000726
112. Ferraro V, Carraro S, Bozzetto S, et al. Exhaled biomarkers in childhood asthma: old and new approaches. Asthma Res Pract. 2018;4(1):9. doi: https://doi.org/10.1186/S40733-018-0045-6
113. Singer F, Luchsinger I, Inci D, et al. Exhaled nitric oxide in symptomatic children at preschool age predicts later asthma. Allergy. 2013;68(4):531–538. doi: https://doi.org/10.1111/ALL.12127
114. Chien JW, Ciufo R, Novak R, et al. Uncontrolled oxygen administration and respiratory failure in acute asthma. Chest. 2000;117(3):728–733. doi: https://doi.org/10.1378/CHEST.117.3.728
115. Lommatzsch SE, Martin RJ, Good JT Jr. Importance of fiberoptic bronchoscopy in identifying asthma phenotypes to direct personalized therapy. Curr Opin Pulm Med. 2013;19(1):42–48. doi: https://doi.org/10.1097/MCP.0b013e32835a5bdc
116. Ben Tkhayat R, Taytard J, Corvol H, et al. Benefits and risks of bronchoalveolar lavage in severe asthma in children. ERJ Open Res. 2021;7(4):00332-2021. doi: https://doi.org/10.1183/23120541.00332-2021
117. Steinke JW, Lawrence MG, Teague WG, et al. Bronchoalveolar lavage cytokine patterns in children with severe neutrophilic and paucigranulocytic asthma. J Allergy Clin Immunol. 2021;147(2): 686–693.e3. doi: https://doi.org/10.1016/j.jaci.2020.05.039
118. Korshunova LV, Uryasev OM, Fomenko NP, Uryaseva YuB. Comorbidity of bronchial asthma and gastroesophageal reflux disease. Zemskii Vrach. 2015;(1):24–27. (In Russ).
119. Kozlova IV, Pakhomova AL, Kvetnoy IM. Asthma and gerd with reflux esophagitis: clinical and morphological specialties of comorbidity. Experimental and Clinical Gastroenterology. 2014;106(6):33–37. (In Russ).
120. Amarasiri DL, Pathmeswaran A, Dassanayake AS, et al. Esophageal motility, vagal function and gastroesophageal reflux in a cohort of adult asthmatics. BMC Gastroenterol. 2012;12:140. doi: https://doi.org/10.1186/1471-230X-12-140
121. Sontag SJ, O’Connell S, Khandelwal S, et al. Asthmatics with gastroesophageal reflux: long term results of a randomized trial of medical and surgical antireflux therapies. Am J Gastroenterol. 2003;98(5):987–999. doi: https://doi.org/10.1111/j.1572-0241.2003.07503.x
122. Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal Definition and Classification of Gastroesophageal Reflux Disease: A Global Evidence-Based Consensus. Am J Gastroenterol. 2006;101(8):1900–1920; quiz 1943. doi: https://doi.org/10.1111/j.1572-0241.2006.00630.x
123. Liang B, Yi Q, Feng Y. Association of gastroesophageal reflux disease with asthma control. Dis Esophagus. 2013;26(8):794–798. doi: https://doi.org/10.1111/j.1442-2050.2012.01399.x
124. Arshad H, Khan RR, Khaja M. Case Report of S1Q3T3 Electrocardiographic Abnormality in a Pregnant Asthmatic Patient During Acute Bronchospasm. Am J Case Rep. 2017;18:110–113. doi: https://doi.org/10.12659/ajcr.901661
125. Abramovskaya KD, Tush EV, Boldova MV, et al. Relationship between the spirometric parameters and ECG parameters in children with bronchial asthma. Allergology and Immunology in Pediatrics. 2022;(2):27–29. (In Russ). doi: https://doi.org/10.53529/2500-1175-2022-2-27-29
126. Yalta K, Yalta T, Gurdogan M, et al. Cardiac Biomarkers in the Setting of Asthma Exacerbations: a Review of Clinical Implications and Practical Considerations. Curr Allergy Asthma Rep. 2020; 20(6):17. doi: https://doi.org/10.1007/s11882-020-00909-5
127. McDonald NJ, Bara AI. Anticholinergic therapy for chronic asthma in children over two years of age. Cochrane Database Syst Rev. 2003;2003(3):CD003535. doi: https://doi.org/10.1002/14651858.CD003535
128. White CS, Cole RP, Lubetsky HW, Austin JHM. Acute asthma. Admission chest radiography in hospitalized adult patients. Chest. 1991;100(1):14–16. doi: https://doi.org/10.1378/CHEST.100.1.14
129. Trottier ED, Chan K, Allain D, Chauvin-Kimoff L. Managing an acute asthma exacerbation in children. Paediatr Child Health. 2021;26(7):438–438. doi: https://doi.org/10.1093/PCH/PXAB058
130. Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clinl Immunol Pract. 2020;8(2):429–440. doi: https://doi.org/10.1016/J.JAIP.2019.11.008
131. Dibek Misirlioğlu E, Reha Cengizlier M. Skin prick test results of child patients diagnosed with bronchial asthma. Allergol Immunopathol (Madr). 2007;35(1):21–24. doi: https://doi.org/10.1157/13099091
132. Bousquet J, Heinzerling L, Bachert C, et al. Practical guide to skin prick tests in allergy to aeroallergens. Allergy. 2012;67(1):18– 24. doi: https://doi.org/10.1111/J.1398-9995.2011.02728.X
133. Mapp CE, Boschetto P, Maestrelli P, Fabbri LM. Occupational asthma. Am J Respir Crit Care Med. 2005;172(3):280–305. doi: https://doi.org/10.1164/RCCM.200311-1575SO
134. Baur X, Sigsgaard T, Aasen TB, et al. Guidelines for the management of work-related asthma. Eur Respir J. 2012;39(3): 529–545. doi: https://doi.org/10.1183/09031936.00096111
135. Park D, Moore VC, Burge CBSG, et al. Serial PEF measurement is superior to crossshift change in diagnosing occupational asthma. Eur Respir J. 2009;34(3):574–578. doi: https://doi.org/10.1183/09031936.00150108
136. Malo JL, Cartier A, L’Archeveque J, et al. How many times per day should peak expiratory flow rates be assessed when investigating occupational asthma? Thorax. 1993;48(12): 1211–1217. doi: https://doi.org/10.1136/THX.48.12.1211
137. Cebrail S, Bilge A, Gulden S. Comparison of Specific Inhalation Challenge Test Results in Occupational and NonOccupational Asthma Patients: Is Monitoring Peak Expiratory Flow Rate Sufficient for Diagnosis? Int J Respir Pulm Med. 2021;5(4):555666. doi: https://doi.org/10.19080/IJOPRS.2021.05.555666
138. DiMango E, Rogers L, Reibman J, et al. Risk Factors for Asthma Exacerbation and Treatment Failure in Adults and Adolescents with Well-controlled Asthma during Continuation and Step-Down Therapy. Ann Am Thorac Soc. 2018;15(8):955–961. doi: https://doi.org/10.1513/ANNALSATS.201711-886OC
139. Usmani OS, Kemppinen A, Gardener E, et al. A Randomized Pragmatic Trial of Changing to and Stepping Down Fluticasone/ Formoterol in Asthma. J Allergy Clin Immunol Pract. 2017;5(5): 1378–1387.e5. doi: https://doi.org/10.1016/J.JAIP.2017.02.006
140. Ducharme FM, Zemek R, Chauhan BF, et al. Factors associated with failure of emergency department management in children with acute moderate or severe asthma: a prospective, multicentre, cohort study. Lancet Respir Med. 2016;4(12):990–998. doi: https://doi.org/10.1016/S2213-2600(16)30160-6
141. Alimani GS, Ananth S, Boccabella C, et al. Prevalence and clinical implications of respiratory viruses in asthma during stable disease state and acute attacks: Protocol for a meta-analysis. PLoS One. 2023;18(11):e0294416. doi: https://doi.org/10.1371/journal.pone.0294416
142. Xiong S, Chen W, Jia X, et al. Machine learning for prediction of asthma exacerbations among asthmatic patients: a systematic review and meta-analysis. BMC Pulm Med. 2023;23(1):278. doi: https://doi.org/10.1186/s12890-023-02570-w
143. Castillo JR, Peters SP, Busse WW. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J Allergy Clin Immunol Pract. 2017;5(4):918–927. doi: https://doi.org/10.1016/J.JAIP.2017.05.001
144. Robijn AL, Bokern MP, Jensen ME, et al. Risk factors for asthma exacerbations during pregnancy: a systematic review and metaanalysis. Eur Respir Rev. 2022;31(164):220039. doi: https://doi.org/10.1183/16000617.0039-2022
145. Leuppi JD, Salome CM, Jenkins CR, et al. Predictive markers of asthma exacerbation during stepwise dose reduction of inhaled corticosteroids. Am J Respir Crit Care Med. 2001;163(2):406–412. doi: https://doi.org/10.1164/AJRCCM.163.2.9912091
146. Crossingham I, Turner S, Ramakrishnan S, et al. Combination fixed-dose beta agonist and steroid inhaler as required for adults or children with mild asthma. Cochrane Database Syst Rev. 2021;5(5):CD013518. doi: https://doi.org/10.1002/14651858.CD013518.pub2
147. Krings JG, Beasley R. The Role of ICS-Containing Rescue Therapy Versus SABA Alone in Asthma Management Today. J Allergy Clin Immunol Pract. 2024;12(4):870–879. doi: https://doi.org/10.1016/J.JAIP.2024.01.011
148. Domingo C, Singh D. The Changing Asthma Management Landscape and Need for Appropriate SABA Prescription. Adv Ther. 2023;40(4):1301–1316. doi: https://doi.org/10.1007/s12325-022-02410-z
149. Beasley R, Holliday M, Reddel HK, et al. Controlled Trial of Budesonide-Formoterol as Needed for Mild Asthma. New Eng J Med. 2019;380(21):2020–2030. doi: https://doi.org/10.1056/NEJMOA1901963
150. O’Byrne PM, FitzGerald JM, Bateman ED, et al. Inhaled Combined Budesonide-Formoterol as Needed in Mild Asthma. New Eng J Med. 2018;378(20):1865–1876. doi: https://doi.org/10.1056/NEJMOA1715274
151. Bateman ED, Reddel HK, O’Byrne PM, et al. As-Needed Budesonide–Formoterol versus Maintenance Budesonide in Mild Asthma. New Eng J Med. 2018;378(20):1877–1887. doi: https://doi.org/10.1056/nejmoa1715275
152. Hatter L, Bruce P, Braithwaite I, et al. ICS-formoterol reliever versus ICS and short-acting β2-agonist reliever in asthma: a systematic review and meta-analysis. ERJ Open Res. 2021;7(1):00701–02020. doi: https://doi.org/10.1183/23120541.00701-2020
153. Stanford RH, Shah MB, D’Souza AO, et al. Short-acting β-agonist use and its ability to predict future asthma-related outcomes. Ann Allergy Asthma Immunol. 2012;109(6):403–407. doi: https://doi.org/10.1016/J.ANAI.2012.08.014
154. Bhagat R, Swystun VA, Cockcroft DW. Salbutamol-induced increased airway responsiveness to allergen and reduced protection versus methacholine: dose response. J Allergy Clin Immunol. 1996;97 (1 Pt 1):47–52. doi: https://doi.org/10.1016/S0091-6749(96)70282-8
155. Hancox RJ, Cowan JO, Flannery EM, et al. Bronchodilator tolerance and rebound bronchoconstriction during regular inhaled beta-agonist treatment. Respir Med. 2000;94(8):767–771. doi: https://doi.org/10.1053/RMED.2000.0820
156. Kraft M, Richardson M, Hallmark B, et al. The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respir Med. 2022;10(7):661–668. doi: https://doi.org/10.1016/S2213-2600(21)00536-1
157. Amin S, Soliman M, McIvor A, et al. Usage Patterns of Short-Acting β2-Agonists and Inhaled Corticosteroids in Asthma: A Targeted Literature Review. J Allergy Clin Immunol Pract. 2020;8(8): 2556–2564.e8. doi: https://doi.org/10.1016/j.jaip.2020.03.013
158. Cho YS, Oh YM. Dilemma of Asthma Treatment in Mild Patients. Tuberc Respir Dis (Seoul). 2019;82(3):190–193. doi: https://doi.org/10.4046/TRD.2018.0013
159. O’Byrne PM, Mejza F. Advances in the treatment of mild asthma: recent evidence. Pol Arch Inter Med. 2018;128(9): 545–549. doi: https://doi.org/10.20452/PAMW.4341
160. Papi A, Canonica GW, Maestrelli P, et al. Rescue Use of Beclomethasone and Albuterol in a Single Inhaler for Mild Asthma. New Eng J Med. 2007;356(20):2040–2052. doi: https://doi.org/10.1056/nejmoa063861
161. Martinez FD, Chinchilli VM, Morgan WJ, et al. Use of beclomethasone dipropionate as rescue treatment for children with mild persistent asthma (TREXA): a randomised, double-blind, placebo-controlled trial. Lancet. 2011;377(9766):650–657. doi: https://doi.org/10.1016/S0140-6736(10)62145-9
162. Cates CJ, Karner C. Combination formoterol and budesonide as maintenance and reliever therapy versus current best practice (including inhaled steroid maintenance), for chronic asthma in adults and children. Cochrane Database Syst Rev. 2013;2013(4):CD007313. doi: https://doi.org/10.1002/14651858.CD007313.pub3
163. Reddel HK, Bateman ED, Schatz M, et al. A Practical Guide to Implementing SMART in Asthma Management. J Allergy Clin Immunol Pract. 2022;10(1S):S31–S38. doi: https://doi.org/10.1016/J.JAIP.2021.10.011
164. Ulmeanu R, Bloju S, Vittos O. Assessment of Symptoms Control, Pulmonary Function and Related Quality of Life in Asthmatic Patients Treated with Extrafine Beclomethasone Dipropionate/ Formoterol Fumarate 100/6 μg pMDI: Results of a Multicenter Observational Study in Romania (ALFRESCO Study). J Asthma Allergy. 2022;15:919–933. doi: https://doi.org/10.2147/JAA.S358798
165. Sobieraj DM, Weeda ER, Nguyen E, et al. Association of Inhaled Corticosteroids and Long-Acting β-Agonists as Controller and Quick Relief Therapy With Exacerbations and Symptom Control in Persistent Asthma: A Systematic Review and Meta-analysis. JAMA. 2018;319(14): 1485–1496. doi: https://doi.org/10.1001/JAMA.2018.2769
166. Bateman ED, Harrison TW, Quirce S, et al. Overall asthma control achieved with budesonide/formoterol maintenance and reliever therapy for patients on different treatment steps. Respir Res. 2011;12(1). doi: https://doi.org/10.1186/1465-9921-12-38
167. Chong J, Haran C, Asher I. Intermittent inhaled corticosteroid therapy versus placebo for persistent asthma in children and adults. Cochrane Database Syst Rev. 2014;2014(4):CD011032. doi: https://doi.org/10.1002/14651858.CD011032
168. Sumino K, Bacharier LB, Taylor J, et al. A Pragmatic Trial of Symptom-Based Inhaled Corticosteroid Use in African-American Children with Mild Asthma. J Allergy Clin Immunol Pract. 2020;8(1): 176–185.e2. doi: https://doi.org/10.1016/J.JAIP.2019.06.030
169. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Resp Crit Care Med. 2000;162(4 Pt 1):1500–1506. doi: https://doi.org/10.1164/AJRCCM.162.4.2002019
170. Pao CS, McKenzie SA, Bisgaard H, Nielsen KG. Inhaled corticosteroids for persistent wheeze in preschool children [3] (multiple letters). Am J Respir Crit Care Med. 2001;163(5):1278. doi: https://doi.org/10.1164/ajrccm.163.5.1635c
171. Castro-Rodriguez JA, Rodriguez-Martinez CE, Ducharme FM. Daily inhaled corticosteroids or montelukast for preschoolers with asthma or recurrent wheezing: A systematic review. Pediatr Pulmonol. 2018;53(12):1670–1677. doi: https://doi.org/10.1002/ppul.24176
172. Zhang HP, Jia CE, Lv Y, et al. Montelukast for prevention and treatment of asthma exacerbations in adults: Systematic review and meta-analysis. Allergy Asthma Proc. 2014;35(4):278–287. doi: https://doi.org/10.2500/AAP.2014.35.3745
173. Mayoral K, Lizano-Barrantes C, Zamora V, et al. Montelukast in paediatric asthma and allergic rhinitis: a systematic review and meta-analysis. Eur Respir Rev. 2023;32(170):230124. doi: https://doi.org/10.1183/16000617.0124-2023
174. Kaiser SV, Huynh T, Bacharier LB, et al. Preventing Exacerbations in Preschoolers With Recurrent Wheeze: A Metaanalysis. Pediatrics. 2016;137(6):e20154496. doi: https://doi.org/10.1542/PEDS.2015-4496
175. Szefler SJ, Baker JW, Uryniak T, et al. Comparative study of budesonide inhalation suspension and montelukast in young children with mild persistent asthma. J Allergy Clin Immunol. 2007;120(5): 1043–1050. doi: https://doi.org/10.1016/J.JACI.2007.08.063
176. Fitzpatrick AM, Jackson DJ, Mauger DT, et al. Individualized therapy for persistent asthma in young children. J Allergy Clin Immunol. 2016;138(6):1608–1618.e12. doi: https://doi.org/10.1016/J.JACI.2016.09.028
177. Chauhan BF, Chartrand C, Ni Chroinin M, et al. Addition of longacting beta2-agonists to inhaled corticosteroids for chronic asthma in children. Cochrane Database Syst Rev. 2015;2015(11):CD007949. doi: https://doi.org/10.1002/14651858.CD007949.pub2
178. Ducharme FM, Ni Chroinin M, Greenstone I, Lasserson TJ. Addition of long-acting beta2-agonists to inhaled steroids versus higher dose inhaled steroids in adults and children with persistent asthma. Cochrane Database Syst Rev. 2010;2010(4):CD005533. doi: https://doi.org/10.1002/14651858.CD005533.PUB2
179. Ni Chroinin M, Greenstone I, Lasserson TJ, Ducharme FM. Addition of long-acting beta2-agonists to inhaled steroids as first line therapy for persistent asthma in steroid-naive adults and children. Cochrane Database Syst Rev. 2009;2009(4):CD005307. doi: https://doi.org/10.1002/14651858.CD005307.pub2
180. Ducharme FM, Ni Chroinin M, Greenstone I, Lasserson TJ. Addition of long-acting beta2-agonists to inhaled corticosteroids versus same dose inhaled corticosteroids for chronic asthma in adults and children. Cochrane Database Syst Rev. 2010;2010(5):CD005535. doi: https://doi.org/10.1002/14651858.cd005535.pub2
181. Greenstone II, Ni Chroinin M, Lasserson TJ, Ducharme F. Combination of inhaled long-acting beta2-agonists and inhaled steroids versus higher dose of inhaled steroids in children and adults with persistent asthma. Cochrane Database Syst Rev. 2005;(4):CD005533. doi: https://doi.org/10.1002/14651858.cd005533
182. Powell H, Gibson PG. Inhaled corticosteroid doses in asthma: an evidence-based approach. Med J Aust. 2003;178(5):223–225. doi: https://doi.org/10.5694/J.1326-5377.2003.TB05167.X
183. Szefler SJ, Martin RJ, King TS, et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol. 2002;109(3):410–418. doi: https://doi.org/10.1067/mai.2002.122635
184. Evans DJ, Taylor DA, Zetterstrom O, et al. A comparison of low-dose inhaled budesonide plus theophylline and highdose inhaled budesonide for moderate asthma. New Eng J Med. 1997;337(20):1412–1419. doi: https://doi.org/10.1056/NEJM199711133372002
185. Castro-Rodriguez JA, Custovic A, Ducharme FM. Treatment of asthma in young children: evidence-based recommendations. Asthma Res Pract. 2016;2(1):1–11. doi: https://doi.org/10.1186/S40733-016-0020-z
186. Castro-Rodriguez JA, Rodrigo GJ. Efficacy of inhaled corticosteroids in infants and preschoolers with recurrent wheezing and asthma: a systematic review with meta-analysis. Pediatrics. 2009;123(3):e519–e525. doi: https://doi.org/10.1542/PEDS.2008-2867
187. Yoshihara S, Tsubaki T, Ikeda M, et al. The efficacy and safety of fluticasone/salmeterol compared to fluticasone in children younger than four years of age. Pediatr Allergy Immunol. 2019;30(2): 195–203. doi: https://doi.org/10.1111/PAI.13010
188. Kew KM, Dahri K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst Rev. 2016;2016(1):CD011721. doi: https://doi.org/10.1002/14651858.CD011721.PUB2
189. Kerstjens HAM, Maspero J, Chapman KR, et al. Once-daily, single-inhaler mometasone-indacaterol-glycopyrronium versus mometasone-indacaterol or twice-daily fluticasone-salmeterol in patients with inadequately controlled asthma (IRIDIUM): a randomised, double-blind, controlled phase 3 study. Lancet Respir Med. 2020;8(10):1000–1012. doi: https://doi.org/10.1016/S2213-2600(20)30190-9
190. Virchow JC, Kuna P, Paggiaro P, et al. Single inhaler extrafine triple therapy in uncontrolled asthma (TRIMARAN and TRIGGER): two double-blind, parallel-group, randomised, controlled phase 3 trials. Lancet. 2019;394(10210):1737–1749. doi: https://doi.org/10.1016/S0140-6736(19)32215-9
191. Agusti A, Fabbri L, Lahousse L, et al. Single inhaler triple therapy (SITT) in asthma: Systematic review and practice implications. Allergy. 2022;77(4):1105–1113. doi: https://doi.org/10.1111/ALL.15076
192. Kim LHY, Saleh C, Whalen-Browne A, et al. Triple vs Dual Inhaler Therapy and Asthma Outcomes in Moderate to Severe Asthma: A Systematic Review and Meta-analysis. JAMA. 2021;325(24): 2466–2479. doi: https://doi.org/10.1001/JAMA.2021.7872
193. Nakamura Y, Hozawa S, Sagara H, et al. Efficacy and safety of once-daily, single-inhaler fluticasone furoate/umeclidinium/ vilanterol versus fluticasone furoate/vilanterol in Japanese patients with inadequately controlled asthma: the CAPTAIN study. Curr Med Res Opin. 2021;37(9):1657–1665. doi: https://doi.org/10.1080/03007995.2021.1944849
194. Umeda A, Shimada H, Yamane T, et al. Real-world effects of once-daily inhaled steroid (fluticasone furoate) combined with long-acting beta-2 agonist (vilanterol) and long-acting muscarinic antagonist (umeclidinium) on lung function tests of asthma patients in Japan. Front Physiol. 2023;14:1131949. doi: https://doi.org/10.3389/FPHYS.2023.1131949
195. Siler TM, Kerwin E, Sousa AR, et al. Efficacy and safety of umeclidinium added to fluticasone furoate/vilanterol in chronic obstructive pulmonary disease: Results of two randomized studies. Respir Med. 2015;109(9):1155–1163. doi: https://doi.org/10.1016/j.rmed.2015.06.006
196. Gessner C, Kornmann O, Maspero J, et al. Fixed-dose combination of indacaterol/glycopyrronium/mometasone furoate once-daily versus salmeterol/fluticasone twice-daily plus tiotropium once-daily in patients with uncontrolled asthma: A randomised, Phase IIIb, non-inferiority study (ARGON). Respir Med. 2020;170: 106021. doi: https://doi.org/10.1016/J.RMED.2020.106021
197. van Zyl-Smit RN, Krüll M, Gessner C, et al. Once-daily mometasone plus indacaterol versus mometasone or twice-daily fluticasone plus salmeterol in patients with inadequately controlled asthma (PALLADIUM): a randomised, double-blind, triple-dummy, controlled phase 3 study. Lancet Respir Med. 2020;8(10):987–999. doi: https://doi.org/10.1016/S2213-2600(20)30178-8
198. Kerstjens HAM, Casale TB, Bleecker ER, et al. Tiotropium or salmeterol as add-on therapy to inhaled corticosteroids for patients with moderate symptomatic asthma: two replicate, double-blind, placebo-controlled, parallel-group, active-comparator, randomised trials. Lancet Respir Med. 2015;3(5):367–376. doi: https://doi.org/10.1016/S2213-2600(15)00031-4
199. Timmer W, Moroni-Zentgraf P, Cornelissen P, et al. Once-daily tiotropium Respimat® 5 μg is an efficacious 24-h bronchodilator in adults with symptomatic asthma. Respir Med. 2015;109(3): 329–338. doi: https://doi.org/10.1016/j.rmed.2014.12.005
200. Rodrigo GJ, Neffen H. Efficacy and safety of tiotropium in school-age children with moderate-to-severe symptomatic asthma: A systematic review. Pediatr Allergy Immunol. 2017;28(6):573–578. doi: https://doi.org/10.1111/pai.12759
201. Ohta K, Ichinose M, Tohda Y, et al. Long-term once-daily tiotropium Respimat® is well tolerated and maintains efficacy over 52 weeks in patients with symptomatic asthma in Japan: A randomised, placebo-controlled study. PLoS One. 2015;10(4):e0124109. doi: https://doi.org/10.1371/journal.pone.0124109
202. Kew KM, Evans DJ, Allison DE, Boyter AC. Long-acting muscarinic antagonists (LAMA) added to inhaled corticosteroids (ICS) versus addition of long-acting beta2-agonists (LABA) for adults with asthma. Cochrane Database Syst Rev. 2015;2015(6):CD011438. doi: https://doi.org/10.1002/14651858.CD011438.pub2
203. Löfdahl CG, Reiss TF, Leff JA, et al. Randomised, placebo controlled trial of effect of a leukotriene receptor antagonist, montelukast, on tapering inhaled corticosteroids in asthmatic patients. BMJ. 1999;319(7202):87–90. doi: https://doi.org/10.1136/BMJ.319.7202.87
204. Price DB, Hernandez D, Magyar P, et al. Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax. 2003;58(3):211–216. doi: https://doi.org/10.1136/THORAX.58.3.211
205. Vaquerizo MJ, Gonzalez-Esteban J, Casan P, et al. Effect of montelukast added to inhaled budesonide on control of mild to moderate asthma. Thorax. 2003;58(3):204–210. doi: https://doi.org/10.1136/THORAX.58.3.204
206. Tamaoki J, Kondo M, Sakai N, et al. Leukotriene antagonist prevents exacerbation of asthma during reduction of high-dose inhaled corticosteroid. The Tokyo Joshi-Idai Asthma Research Group. Am J Respir Crit Care Med. 1997;155(4):1235–1240. doi: https://doi.org/10.1164/AJRCCM.155.4.9105060
207. Ye Q, He XO, D’Urzo A. A Review on the Safety and Efficacy of Inhaled Corticosteroids in the Management of Asthma. Pulm Ther. 2017;3(1):1–18. doi: https://doi.org/10.1007/S41030-017-0043-5
208. Malo JL, Cartier A, Ghezzo H, et al. Comparison of four-timesa-day and twice-a-day dosing regimens in subjects requiring 1200 micrograms or less of budesonide to control mild to moderate asthma. Respir Med. 1995;89(8):537–543. doi: https://doi.org/10.1016/0954-6111(95)90154-X
209. Toogood JH, Baskerville JC, Jennings B, et al. Influence of dosing frequency and schedule on the response of chronic asthmatics to the aerosol steroid, budesonide. J Allergy Clin Immunol. 1982;70(4):288–298. doi: https://doi.org/10.1016/0091-6749(82)90065-3
210. Normansell R, Walker S, Milan SJ, et al. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;2014(1):CD003559. doi: https://doi.org/10.1002/14651858.CD003559.PUB4
211. Farne HA, Wilson A, Milan S, et al. Anti-IL-5 therapies for asthma. Cochrane Database Syst Rev. 2022;7(7):CD010834. doi: https://doi.org/10.1002/14651858.CD010834.pub4
212. Powell C, Milan SJ, Dwan K, et al. Mepolizumab versus placebo for asthma. Cochrane Database Syst Rev. 2015;2015(7):CD010834. doi: https://doi.org/10.1002/14651858.CD010834.pub2
213. Xiong XF, Zhu M, Wu HX, et al. Efficacy and safety of dupilumab for the treatment of uncontrolled asthma: a meta-analysis of randomized clinical trials. Respir Res. 2019;20(1):108. doi: https://doi.org/10.1186/S12931-019-1065-3
214. Li J, Wang F, Lin C, et al. The efficacy and safety of reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: A systematic review and meta-analysis. J Asthma. 2017;54(3):300–307. doi: https://doi.org/10.1080/02770903.2016.1212371
215. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31–44. doi: https://doi.org/10.1016/S0140-6736(16)30307-5
216. Corren J, Karpefors M, Hellqvist Å, et al. Tezepelumab Reduces Exacerbations Across All Seasons in Patients with Severe, Uncontrolled Asthma: A Post Hoc Analysis of the PATHWAY Phase 2b Study. J Asthma Allergy. 2021;14:1–11. doi: https://doi.org/10.2147/JAA.S286036
217. Busse WW, Castro M, Casale TB. Asthma Management in Adults. J Allergy Clinl Immunol Pract. 2023;11(1):21–33. doi: https://doi.org/10.1016/J.JAIP.2022.10.015
218. Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines — recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5): 1023–1042. doi: https://doi.org/10.1111/all.14221
219. Menzies-Gow A, Gurnell M, Heaney LG, et al. Oral corticosteroid elimination via a personalised reduction algorithm in adults with severe, eosinophilic asthma treated with benralizumab (PONENTE): a multicentre, open-label, single-arm study. Lancet Respir Med. 2022;10(1):47–58. doi: https://doi.org/10.1016/S2213-2600(21)00352-0
220. Chheang C, Guinand S, von Garnier C, Sartori C. New perspectives of biological therapy for severe asthma in adults and adolescents. Swiss Med Week. 2022;152:w30176. doi: https://doi.org/10.4414/SMW.2022.W30176
221. Wangberg H, Woessner K. Choice of biologics in asthma endotypes. Curr Opin Allergy Clin Immunol. 2021;21(1):79–85. doi: https://doi.org/10.1097/ACI.0000000000000708
222. Katsaounou P, Buhl R, Brusselle G, et al. Omalizumab as alternative to chronic use of oral corticosteroids in severe asthma. Respir Med. 2019;150:51–62. doi: https://doi.org/10.1016/J.RMED.2019.02.003
223. Gon Y, Maruoka S, Mizumura K. Omalizumab and IgE in the Control of Severe Allergic Asthma. Front Pharmacol. 2022;13:839011. doi: https://doi.org/10.3389/FPHAR.2022.839011
224. Henriksen DP, Bodtger U, Sidenius K, et al. Efficacy, adverse events, and inter-drug comparison of mepolizumab and reslizumab anti-IL-5 treatments of severe asthma — a systematic review and meta-analysis. Eur Clin Respir J. 2018;5(1):1536097. doi: https://doi.org/10.1080/20018525.2018.1536097
225. Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med. 2003;167(2):199–204. doi: https://doi.org/10.1164/RCCM.200208-789OC
226. Garrett JK, Jameson SC, Thomson B, et al. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol. 2004;113(1):115–119. doi: https://doi.org/10.1016/j.jaci.2003.10.049
227. Egan RW, Athwal D, Bodmer MW, et al. Effect of Sch 55700, a humanized monoclonal antibody to human interleukin-5, on eosinophilic responses and bronchial hyperreactivity. Arzneimittelforschung. 1999;49(9):779–790. doi: https://doi.org/10.1055/S-0031-1300502
228. Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–1132. doi: https://doi.org/10.1164/RCCM.201103-0396OC
229. Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–366. doi: https://doi.org/10.1016/S2213-2600(15)00042-9
230. Koike M, Nakamura K, Furuya A, et al. Establishment of humanized anti-interleukin-5 receptor alpha chain monoclonal antibodies having a potent neutralizing activity. Hum Antibodies. 2009;18(1–2):17–27. doi: https://doi.org/10.3233/HAB-2009-0198
231. Kolbeck R, Kozhich A, Koike M, et al. MEDI-563, a humanized antiIL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol. 2010;125(6):1344– 1353.e2. doi: https://doi.org/10.1016/J.JACI.2010.04.004
232. Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638– 1650. doi: https://doi.org/10.1016/S0140-6736(19)31881-1
233. Guttman-Yassky E, Bissonnette R, Ungar B, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):155–172. doi: https://doi.org/10.1016/J.JACI.2018.08.022
234. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. New Eng J Med. 2021;384(19):1800–1809. doi: https://doi.org/10.1056/NEJMOA2034975
235. Chen S, Tran TN, Cook W, et al. Clinical outcomes and emergency health care utilization in patients with severe asthma who continued, switched, or stopped biologic therapy: results from the CLEAR STUDY. Chest. 2022;162(4):A23–A27. doi: https://doi.org/10.1016/j.chest.2022.08.019
236. Haldar P, Brightling CE, Singapuri A, et al. Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: a 12-month follow-up analysis. J Allergy Clin Immunol. 2014;133(3):921–923. doi: https://doi.org/10.1016/J.JACI.2013.11.026
237. Undela K, Goldsmith L, Kew KM, Ferrara G. Macrolides versus placebo for chronic asthma. Cochrane Database Syst Rev. 2021;11(11):CD002997. doi: https://doi.org/10.1002/14651858.CD002997.pub5
238. Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The immunomodulatory effects of macrolides-A systematic review of the underlying mechanisms. Front Immunol. 2018;9:32. doi: https://doi.org/10.3389/FIMMU.2018.00302
239. Hiles SA, McDonald VM, Guilhermino M, et al. Does maintenance azithromycin reduce asthma exacerbations? An individual participant data metaanalysis. Eur Respir J. 2019;54(5):1901381. doi: https://doi.org/10.1183/13993003.01381-2019
240. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659–668. doi: https://doi.org/10.1016/S0140-6736(17)31281-3
241. Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): A multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–329. doi: https://doi.org/10.1136/thoraxjnl-2012-202698
242. Sadeghdoust M, Mirsadraee M, Aligolighasemabadi F, et al. Effect of azithromycin on bronchial wall thickness in severe persistent asthma: A double-blind placebo-controlled randomized clinical trial. Respir Med. 2021;185:106494. doi: https://doi.org/10.1016/J.RMED.2021.106494
243. Nievas IFF, Anand KJS. Severe acute asthma exacerbation in children: a stepwise approach for escalating therapy in a pediatric intensive care unit. J Pediatr Pharmacol Ther. 2013;18(2):88–104. doi: https://doi.org/10.5863/1551-6776-18.2.88
244. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev. 2013;2013(9):CD000052. doi: https://doi.org/10.1002/14651858.CD000052.pub3
245. Haney S, Hancox RJ. Overcoming beta-agonist tolerance: High dose salbutamol and ipratropium bromide. Two randomised controlled trials. Respir Res. 2007;8(1):1–7. doi: https://doi.org/10.1186/1465-9921-8-19/FIGURES/2_557
246. Avdeev S, Zhestkov A, Leshenko I, et al. Nebulized budesonide in acute severe asthma: comparison with systemic corticosteroids. Multicenre randomized controlled trial. Pulmonologiya. 2006;(4):58–67. (In Russ). doi: https://doi.org/10.18093/0869-0189-2006-4-58-67
247. Begunov AV, Zarubina EG, Betaneli TSh. Nebulaizernaya terapiya suspenziei Pul’mikorta pri tyazheloi bronkhial’noi astme. Atmosfera. Pul’monologiya i allergologiya. 2023;(4):51–52. (In Russ).
248. Edmonds ML, Milan SJ, Camargo CA, et al. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2012;12(12):CD002308. doi: https://doi.org/10.1002/14651858.CD002308.pub2
249. Edmonds ML, Milan SJ, Brenner BE, et al. Inhaled steroids for acute asthma following emergency department discharge. Cochrane Database Syst Rev. 2012;12(12):CD002316. doi: https://doi.org/10.1002/14651858.CD002316.pub2
250. Volovitz B. Inhaled budesonide in the management of acute worsenings and exacerbations of asthma: A review of the evidence. Respir Med. 2007;101(4):685–695. doi: https://doi.org/10.1016/j.rmed.2006.10.009
251. Arulparithi CS, Babu TA, Ravichandran C, et al. Efficacy of Nebulised Budesonide versus Oral Prednisolone in Acute Severe Asthma. Indian J Pediatr. 2015;82(4):328–332. doi: https://doi.org/10.1007/s12098-014-1498-0
252. Chen AH, Zeng GQ, Chen RC, et al. Effects of nebulized highdose budesonide on moderate-to-severe acute exacerbation of asthma in children: a randomized, double-blind, placebo-controlled study. Respirology. 2013;18(Suppl 3):47–52. doi: https://doi.org/10.1111/RESP.12168
253. Ediger D, Coşkun F, Kunt Uzaslan E, et al. Clinical effectiveness of nebulised budesonide in the treatment of acute asthma attacks. Tuberk Toraks. 2006;54(2):128–136.
254. Murphy KR, Hong JG, Wandalsen G, et al. Nebulized Inhaled Corticosteroids in Asthma Treatment in Children 5 Years or Younger: A Systematic Review and Global Expert Analysis. J Allergy Clinl Immunol Pract. 2020;8(6):1815–1827. doi: https://doi.org/10.1016/J.JAIP.2020.01.042
255. Volovitz B, Nussinovitch M, Finkelstein Y, et al. Effectiveness of inhaled corticosteroids in controlling acute asthma exacerbations in children at home. Clin Pediatr. 2001;40(2):79–86. doi: https://doi.org/10.1177/000992280104000203
256. Higenbottam TW, Britton J, Lawrence D, et al. Comparison of Nebulised Budesonide and Prednisolone in Severe Asthma Exacerbation in Adults. BioDrugs. 2000;14(4):247–254. doi: https://doi.org/10.2165/00063030-200014040-00004
257. Maltais F, Ostinelli J, Bourbeau J, et al. Comparison of nebulized budesonide and oral prednisolone with placebo in the treatment of acute exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Am J Respir Crit Care Med. 2002;165(5):698–703. doi: https://doi.org/10.1164/AJRCCM.165.5.2109093
258. Ververeli K, Chipps B. Oral corticosteroid-sparing effects of inhaled corticosteroids in the treatment of persistent and acute asthma. Ann Allergy Asthma Immunol. 2004;92(5):512–522. doi: https://doi.org/10.1016/S1081-1206(10)61758-9
259. Edmonds ML, Camargo CA, Brenner BE, Rowe BH. Replacement of oral corticosteroids with inhaled corticosteroids in the treatment of acute asthma following emergency department discharge: A meta-analysis. Chest. 2002;121(6):1798–1805. doi: https://doi.org/10.1378/chest.121.6.1798
260. Matthews EE, Curtis PD, McLain BI, et al. Nebulized budesonide versus oral steroid in severe exacerbations of childhood asthma. Acta Paediatr. 1999;88(8):841–843. doi: https://doi.org/10.1080/08035259950168757
261. Devidayal, Singhi S, Kumar L, Jayshree M. Efficacy of nebulized budesonide compared to oral prednisolone in acute bronchial asthma. Acta Paediatr. 1999;88(8):835–840. doi: https://doi.org/10.1080/08035259950168748
262. Sano F, Cortez GK, Solé D, Naspitz CK. Inhaled budesonide for the treatment of acute wheezing and dyspnea in children up to 24 months old receiving intravenous hydrocortisone. J Allergy Clin Immunol. 2000;105(4):699–703. doi: https://doi.org/10.1067/MAI.2000.104784
263. Sharma S, Harish R, Dutt N, Digra KK. To evaluate the efficacy of nebulized budesonide compared to oral prednisolone in the management of moderate exacerbation of acute asthma. Int J Contemp Pediatrics. 2017;4(4):1278–1283. doi: https://doi.org/10.18203/2349-3291.IJCP20172542
264. Fitzgerald JM, Shragge D, Haddon J, et al. A randomized, controlled trial of high dose, inhaled budesonide versus oral prednisone in patients discharged from the emergency department following an acute asthma exacerbation. Can Respir J. 2000;7(1): 61–67. doi: https://doi.org/10.1155/2000/587957
265. Nana A, Youngchaiyud P, Charoenratanakul S, et al. High-dose inhaled budesonide may substitute for oral therapy after an acute asthma attack. J Asthma. 1998;35(8):647–655. doi: https://doi.org/10.3109/02770909809048967
266. Rowe BH, Bota GW, Fabris L, et al. Inhaled budesonide in addition to oral corticosteroids to prevent asthma relapse following discharge from the emergency department: a randomized controlled trial. JAMA. 1999;281(22):2119–2126. doi: https://doi.org/10.1001/JAMA.281.22.2119
267. Manser R, Reid D, Abramson MJ. Corticosteroids for acute severe asthma in hospitalised patients. Cochrane Database Syst Rev. 2001;(1):CD001740. doi: https://doi.org/10.1002/14651858.CD001740
268. Ganaie MB, Munavvar M, Gordon M, et al. Patient- and parent-initiated oral steroids for asthma exacerbations. Cochrane Database Syst Rev. 2016;12(12):CD012195. doi: https://doi.org/10.1002/14651858.CD012195.PUB2
269. Volmer T, Effenberger T, Trautner C, Buhl R. Consequences of long-term oral corticosteroid therapy and its side-effects in severe asthma in adults: a focused review of the impact data in the literature. Eur Respir J. 2018;52(4):1800703. doi: https://doi.org/10.1183/13993003.00703-2018
270. Del Pozo V, Bobolea I, Rial MJ, et al. Expert consensus on the use of systemic glucocorticoids for managing eosinophil-related diseases. Front Immunol. 2023;14:1310211. doi: https://doi.org/10.3389/fimmu.2023.1310211
271. Hew M, Chung KF. Corticosteroid insensitivity in severe asthma: significance, mechanisms and aetiology. Int Med J. 2010;40(5):323– 334. doi: https://doi.org/10.1111/J.1445-5994.2010.02192.X
272. Chang AB, Clark R, Sloots TP, et al. A 5- versus 3-day course of oral corticosteroids for children with asthma exacerbations who are not hospitalised: a randomised controlled trial. Med J Aust. 2008;189(6):306–310. doi: https://doi.org/10.5694/J.1326-5377.2008.TB02046.X
273. Hasegawa T, Ishihara K, Takakura S, et al. Duration of systemic corticosteroids in the treatment of asthma exacerbation; a randomized study. Int Med. 2000;39(10):794–797. doi: https://doi.org/10.2169/INTERNALMEDICINE.39.794
274. Jones AM, Munavvar M, Vail A, et al. Prospective, placebocontrolled trial of 5 vs 10 days of oral prednisolone in acute adult asthma. Respir Med. 2002;96(11):950–954. doi: https://doi.org/10.1053/RMED.2002.1369
275. Knightly R, Milan SJ, Hughes R, et al. Inhaled magnesium sulfate in the treatment of acute asthma. Cochrane Database Syst Rev. 2017;11(11):CD003898. doi: https://doi.org/10.1002/14651858.CD003898.PUB6
276. Kew KM, Kirtchuk L, Michell CI. Intravenous magnesium sulfate for treating adults with acute asthma in the emergency department. Cochrane Database Syst Rev. 2014;2014(5):CD010909. doi: https://doi.org/10.1002/14651858.CD010909.pub2
277. Craig SS, Dalziel SR, Powell CVE, et al. Interventions for escalation of therapy for acute exacerbations of asthma in children: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2020;8(8):CD012977. doi: https://doi.org/10.1002/14651858.CD012977.pub2
278. Blitz M, Blitz S, Beasely R, et al. Inhaled magnesium sulfate in the treatment of acute asthma. Cochrane Database Syst Rev. 2005;(3):CD003898. doi: https://doi.org/10.1002/14651858.cd003898.pub3
279. Rovsing AH, Savran O, Ulrik CS. Magnesium sulfate treatment for acute severe asthma in adults-a systematic review and meta-analysis. Front Allergy. 2023;4:1211949. doi: https://doi.org/10.3389/falgy.2023.1211949
280. Goodacre S, Cohen J, Bradburn M, et al. Intravenous or nebulised magnesium sulphate versus standard therapy for severe acute asthma (3Mg trial): A double-blind, randomised controlled trial. Lancet Respir Med. 2013;1(4):293–300. doi: https://doi.org/10.1016/S2213-2600(13)70070-5
281. Craig SS, Dalziel SR, Powell CVE, et al. Interventions for escalation of therapy for acute exacerbations of asthma in children: An overview of Cochrane reviews. Paediatr Respir Rev. 2021;38: 63–65. doi: https://doi.org/10.1016/J.PRRV.2020.08.006
282. Gondal AZ, Zulfiqar H. Aminophylline. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
283. Gray CS, Xu Y, Babl FE, et al. International perspective on research priorities and outcome measures of importance in the care of children with acute exacerbations of asthma: a qualitative interview study. BMJ Open Respir Res. 2023;10(1):e001502. doi: https://doi.org/10.1136/BMJRESP-2022-001502
284. Craig S, Powell CVE, Nixon GM, et al. Treatment patterns and frequency of key outcomes in acute severe asthma in children: A Paediatric Research in Emergency Departments International Collaborative (PREDICT) multicentre cohort study. BMJ Open Respir Res. 2022;9(1):e001137. doi: https://doi.org/10.1136/BMJRESP-2021-001137
285. Koldeweij C, Appelbaum N, Gonzalvez CR, et al. Mind the gap: Mapping variation between national and local clinical practice guidelines for acute paediatric asthma from the United Kingdom and the Netherlands. PLoS One. 2022;17(5):e0267445. doi: https://doi.org/10.1371/JOURNAL.PONE.0267445
286. Shaitor VM. Skoraya i neotlozhnaya meditsinskaya pomoshch’ detyam na dogospital’nom etape: A quick guide for doctors. St. Petersburg: InformMed; 2013. pp. 120–125. (In Russ).
287. Ito K, Lim S, Caramori G, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Nat Acad Sci U S A. 2002;99(13):8921–8926. doi: https://doi.org/10.1073/PNAS.132556899
288. Cosio BG, Iglesias A, Rios A, et al. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax. 2009;64(5):424–429. doi: https://doi.org/10.1136/THX.2008.103432
289. To Y, Ito K, Kizawa Y, et al. Targeting phosphoinositide-3- kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(7):897–904. doi: https://doi.org/10.1164/RCCM.200906-0937OC
290. Mitra AA, Bassler D, Watts K, et al. Intravenous aminophylline for acute severe asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev. 2005;2005(2):CD001276. doi: https://doi.org/10.1002/14651858.cd001276.pub2
291. Rahmania M, Olivianto E. Intravenous aminophylline treatment for severe asthma exacerbation in a toddler: an evidence-based case report. PSJ. 2022;3(2):30–36. doi: https://doi.org/10.51559/pedscij.v3i2.39
292. Eid NS, O’Hagan A, Bickel S, et al. Anti-inflammatory dosing of theophylline in the treatment of status asthmaticus in children. J Asthma Allergy. 2016;9:183–189. doi: https://doi.org/10.2147/JAA.S113747
293. Perrin K, Wijesinghe M, Healy B, et al. Randomised controlled trial of high concentration versus titrated oxygen therapy in severe exacerbations of asthma. Thorax. 2011;66(11):937–941. doi: https://doi.org/10.1136/THX.2010.155259
294. Rodrigo GJ, Verde MR, Peregalli V, Rodrigo C. Effects of shortterm 28% and 100% oxygen on PaCO2 and peak expiratory flow rate in acute asthma: a randomized trial. Chest. 2003;124(4): 1312–1317. doi: https://doi.org/10.1378/CHEST.124.4.1312
295. Gupta DA. A prospective randomized controlled trial on the efficacy of noninvasive ventilation in severe acute asthma. Respir Care. 2010;55(5):536–543
296. Agarwal R, Reddy C, Aggarwal AN, Gupta D. Is there a role for noninvasive ventilation in acute respiratory distress syndrome? A meta-analysis. Respir Med. 2006;100(12):2235–2238. doi: https://doi.org/10.1016/j.rmed.2006.03.018
297. Avdeev SN. Respiratornaya podderzhka pri astmaticheskom statuse. In: Bronkhial’naya astma u vzroslykh: Clinical guidelines. Chuchalin AG, ed. Moscow: Atmosfera; 2002. pp. 130–155. (In Russ).
298. Kuyper LM, Paré PD, Hogg JC, et al. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115(1):6–11. doi: https://doi.org/10.1016/S0002-9343(03)00241-9
299. Inwald D, Roland M, Kuitert L, et al. (Oxygen treatment for acute severe asthma. Brit Med J. 2001;323(7304):98–100. doi: https://doi.org/10.1136/BMJ.323.7304.98
300. Pollart SM, Compton RM, Elward KS. Management of Acute Asthma Exacerbations. Am Fam Physician. 2011;84(1):40–47. doi: https://www.aafp.org/pubs/afp/issues/2011/0701/p40.html
301. Siemieniuk RAC, Chu DK, Kim LHY, et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 2018;363:k4169. doi: https://doi.org/10.1136/BMJ.K4169
302. Patel B, Khine H, Shah A, et al. Randomized clinical trial of high concentration versus titrated oxygen use in pediatric asthma. Pediatr Pulmonol. 2019;54(7):970–976. doi: https://doi.org/10.1002/PPUL.24329
303. Carroll CL, Smith SR, Collins MS, et al. Endotracheal intubation and pediatric status asthmaticus: site of original care affects treatment. Pediatr Crit Care Med. 2007;8(2):91–95. doi: https://doi.org/10.1097/01.PCC.0000257115.02573.FC
304. Zimmerman JL, Dellinger RP, Shah AN, Taylor RW. Endotracheal intubation and mechanical ventilation in severe asthma. Crit Care Med. 1993;21(11):1727–1730. doi: https://doi.org/10.1097/00003246-199311000-00023
305. Kilburn SA, Lasserson TJ, McKean MC. Pet allergen control measures for allergic asthma in children and adults. Cochrane Database Syst Rev. 2003;2001(1):CD002989. doi: https://doi.org/10.1002/14651858.CD002989
306. Zuiani C, Custovic A. Update on House Dust Mite Allergen Avoidance Measures for Asthma. Curr Allergy Asthma Rep. 2020;20(9):50. doi: https://doi.org/10.1007/S11882-020-00948-Y
307. Marks GB. House dust mite exposure as a risk factor for asthma: benefits of avoidance. Allergy. 1998;53(48 Suppl):108–114. doi: https://doi.org/10.1111/j.1398-9995.1998.tb05010.x
308. Custovic A, Murray CS, Simpson A. Dust-mite inducing asthma: what advice can be given to patients? Expert Rev Respir Med. 2019;13(10):929–936. doi: https://doi.org/10.1080/17476348.2019.1651647
309. Custovic A, de Moira AP, Murray CS, Simpson A. Environmental influences on childhood asthma: Allergens. Pediatr Allergy Immunol. 2023;34(2):e13915. doi: https://doi.org/10.1111/pai.13915
310. Federalnye klinicheskie rekomendatsii po provedeniyu allergen-spetsificheskoi immunoterapii. Russian Association of Allergologists and Clinical Immunologists. Moscow; 2013. 14 p. (In Russ). Доступно по: https://raaci.ru/education/clinic_recomendations/103.html. Ссылка активна на 26.06.2025.
311. Zuberbier T, Bachert C, Bousquet PJ, et al. GA2 LEN/EAACI pocket guide for allergen-specific immunotherapy for allergic rhinitis and asthma. Allergy. 2010;65(12):1525–1530. doi: https://doi.org/10.1111/J.1398-9995.2010.02474.X
312. Abramson MJ, Puy RM, Weiner JM. Injection allergen immunotherapy for asthma. Cochrane Database Syst Rev. 2010;(8): CD001186. doi: https://doi.org/10.1002/14651858.CD001186.pub2
313. Zheng C, Xu H, Huang S, Chen Z. Efficacy and safety of subcutaneous immunotherapy in asthmatic children allergic to house dust mite: a meta-analysis and systematic review. Front Pediatr. 2023;11:1137478. doi: https://doi.org/10.3389/fped.2023.1137478
314. Canonica GW, Cox L, Pawankar R, et al. Sublingual immunotherapy: World Allergy Organization position paper 2013 update. World Allergy Organ J. 2014;7(1):6. doi: https://doi.org/10.1186/1939-4551-7-6
315. Hoshino M, Akitsu K, Ohtawa J, Kubota K. Long-term efficacy of house dust mite sublingual immunotherapy on clinical and pulmonary function in patients with asthma and allergic rhinitis. J Allergy Clin Immunol Glob. 2024;3(2):100206. doi: https://doi.org/10.1016/J.JACIG.2024.100206
316. Agache I, Lau S, Akdis CA, et al. EAACI Guidelines on Allergen Immunotherapy: House dust mite-driven allergic asthma. Allergy. 2019;74(5):855–873. doi: https://doi.org/10.1111/ALL.13749
317. Fortescue R, Kew KM, Leung MST. Sublingual immunotherapy for asthma. Cochrane Database Syst Rev. 2020;9(9):CD011293. doi: https://doi.org/10.1002/14651858.CD011293.pub3
318. Virchow JC, Backer V, Kuna P, et al. Efficacy of a house dust mite sublingual allergen immunotherapy tablet in adults with allergic asthma: A randomized clinical trial. JAMA. 2016;315(16): 1715–1725. doi: https://doi.org/10.1001/jama.2016.3964
319. Nakagome K, Nagata M. Allergen Immunotherapy in Asthma. Pathogens. 2021;10(11):1406. doi: https://doi.org/10.3390/pathogens10111406
320. Tanaka A, Tohda Y, Okamiya K, et al. Efficacy and Safety of HDM SLIT Tablet in Japanese Adults with Allergic Asthma. J Allergy Clinl Immunol Pract. 2020;8(2):710–720.e14. doi: https://doi.org/10.1016/J.JAIP.2019.09.002
321. Nishi K, Yoshimura C, Morita K, et al. Effectiveness of bronchial thermoplasty in patients with asthma exhibiting overweight/obesity and low quality of life. World Allergy Organ J. 2023;16(3):100756. doi: https://doi.org/10.1016/j.waojou.2023.100756
322. Madsen H, Henriksen DP, Backer V, et al. Efficacy of bronchial thermoplasty in patients with severe asthma. J Asthma. 2021;58(2):216–222. doi: https://doi.org/10.1080/02770903.2019.1678636
323. Bonta PI, Chanez P, Annema JT, et al. Bronchial Thermoplasty in Severe Asthma: Best Practice Recommendations from an Expert Panel. Respiration. 2018;95(5):289–300. doi: https://doi.org/10.1159/000488291
324. Burn J, Sims AJ, Patrick H, et al. Efficacy and safety of bronchial thermoplasty in clinical practice: a prospective, longitudinal, cohort study using evidence from the UK Severe Asthma Registry. BMJ Open. 2019;9(6):e026742. doi: https://doi.org/10.1136/BMJOPEN-2018-026742
325. Madan K, Mittal S, Suri TM, et al. Bronchial thermoplasty for severe asthma: A position statement of the Indian chest society. Lung India. 2020;37(1):86–96. doi: https://doi.org/10.4103/LUNGINDIA.LUNGINDIA_418_19
326. Kuklina GM, Sivokozov IV, Makaryants NN, Shmelev EI. Successful Use of Bronchial Thermoplastics in a Female Patient with Severe Bronchial Asthma. Doctor.Ru. 2020;19(11):38–41. (In Russ). doi: https://doi.org/10.31550/1727-2378-2020-19-11-38-41
327. Hondras MA, Linde K, Jones AP. Manual therapy for asthma. Cochrane Database Syst Rev. 2005;(2):CD001002. doi: https://doi.org/10.1002/14651858.cd001002.pub2
328. Santino TA, Chaves GSS, Freitas DA, et al. Breathing exercises for adults with asthma. Cochrane Database Syst Rev. 2020;3(3):CD001277. doi: https://doi.org/10.1002/14651858.CD001277.pub4
329. Thomas M. Breathing exercises and asthma. Thorax. 2003;58(8): 649–650. doi: https://doi.org/10.1136/thorax.58.8.649
330. Prem V, Sahoo RC, Adhikari P. Comparison of the effects of Buteyko and pranayama breathing techniques on quality of life in patients with asthma — A randomized controlled trial. Clin Rehabil. 2013;27(2): 133–141. doi: https://doi.org/10.1177/0269215512450521
331. Vagedes K, Kuderer S, Ehmann R, et al. Effect of Buteyko breathing technique on clinical and functional parameters in adult patients with asthma: a randomized, controlled study. Eur J Med Res. 2024;29(1):42. doi: https://doi.org/10.1186/s40001-023-01634-1
332. Cooper S, Oborne J, Newton S, et al. Effect of two breathing exercises (Buteyko and pranayama) in asthma: a randomised controlled trial. Thorax. 2003;58(8):674–679. doi: https://doi.org/10.1136/THORAX.58.8.674
333. Agarwal D, Gupta PP, Sood S. Assessment for Efficacy of Additional Breathing Exercises Over Improvement in Health Impairment Due to Asthma Assessed using St. George’s Respiratory Questionnaire. Int J Yoga. 2017;10(3):145–151. doi: https://doi.org/10.4103/0973-6131.213472
334. Sankar J, Das RR. Asthma — A Disease of How We Breathe: Role of Breathing Exercises and Pranayam. Indian J Pediatr. 2018;85(10):905–910. doi: https://doi.org/10.1007/s12098-017-2519-6
335. Burgess J, Ekanayake B, Lowe A, et al. Systematic review of the effectiveness of breathing retraining in asthma management. Expert Rev Respir Med. 2011;5(6):789–807. doi: https://doi.org/10.1586/ers.11.69
336. Ignatova GL, Antonov VN, Blinova EV, et al. Bronkhial’naya astma u beremennykh. Russian Journal of Woman and Child Health. 2015;23(20):1229–1232. (In Russ).
337. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–478. doi: https://doi.org/10.1111/J.1398-9995.2004.00526.X
338. Wang H, Li N, Huang H. Asthma in Pregnancy: Pathophysiology, Diagnosis, Whole-Course Management, and Medication Safety. Can Respir J. 2020;2020:9046842. doi: https://doi.org/10.1155/2020/9046842
339. Alexander S, Dodds L, Armson BA. Perinatal outcomes in women with asthma during pregnancy. Obstet Gynecol. 1998;92(3): 435–440. doi: https://doi.org/10.1016/S0029-7844(98)00191-4
340. Андреева О.С. Особенности течения и лечения бронхиальной астмы в период беременности: автореф. дис. … канд. мед. наук. — СПб.; 2006. — 21 с. [Andreeva OS. Osobennosti techeniya i lecheniya bronkhial’noi astmy v period beremennosti. [abstract of dissertation]. St. Petersburg; 2026. 21 p. (In Russ).]
341. Vyawahare AP, Gaidhane A, Wandile B. Asthma in Pregnancy: A Critical Review of Impact, Management, and Outcomes. Cureus. 2023;15(12):e50094. doi: https://doi.org/10.7759/cureus.50094
342. Giles W, Murphy V. Asthma in pregnancy: a review. Obstet Med. 2013;6(2):107–110. doi: https://doi.org/10.1258/OM.2012.120008
343. Rohrer V, Schmidt-Trucksäss A. Impact of exercise, sport and rehabilitation therapy in asthma and COPD. Ther Umsch. 2014;71(5):295–300. doi: https://doi.org/10.1024/0040-5930/A000516
344. Thomas M. Allergic rhinitis: evidence for impact on asthma. BMC Pulm Med. 2006;6 Suppl 1(Suppl 1):S4. doi: https://doi.org/10.1186/1471-2466-6-S1-S4
345. Wise SK, Lin SY, Toskala E, et al. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol. 2018;8(2):108–352. doi: https://doi.org/10.1002/ALR.22073
346. Vignola AM, Chanez P, Godard P, Bousquet J. Relationships between rhinitis and asthma. Allergy. 1998;53(9):833–839. doi: https://doi.org/10.1111/J.1398-9995.1998.TB03988.X
347. Jacobsen L, Niggemann B, Dreborg S, et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy. 2007;62(8):943–948. doi: https://doi.org/10.1111/J.1398-9995.2007.01451.X
348. Arshad H, Lack G, Durham SR, et al. Prevention Is Better than Cure: Impact of Allergen Immunotherapy on the Progression of Airway Disease. J Allergy Clinl Immunol Pract. 2024;12(1):45–56. doi: https://doi.org/10.1016/J.JAIP.2023.10.013
349. Methodological instructions МУ 3.3.1.1095-02. Meditsinskie protivopokazaniya k provedeniyu profilakticheskikh privivok preparatami natsional’nogo kalendarya privivok. (In Russ). Доступно по: https://legalacts.ru/doc/mu-3311095-02-331-vaktsinoprofilaktika-meditsinskieprotivopokazanija-k/?ysclid=mcdjwgyift119412374. Ссылка активна на 26.06.2025.
350. Nilsson L, Brockow K, Alm J, et al. Vaccination and allergy: EAACI position paper, practical aspects. Pediatr Allergy Immunol. 2017;28(7):628–640. doi: https://doi.org/10.1111/PAI.12762
351. Gao YD, Xepapadaki P, Cui YW, et al. Effect of Haemophilus influenzae, Streptococcus pneumoniae and influenza vaccinations on infections, immune response and asthma control in preschool children with asthma. Allergy. 2023;78(6):1473–1488. doi: https://doi.org/10.1111/ALL.15551
352. Zaidi SR, Blakey JD. Why are people with asthma susceptible to pneumonia? A review of factors related to upper airway bacteria. Respirology. 2019;24(5):423–430. doi: https://doi.org/10.1111/RESP.13528
353. Vaktsinoprofilaktika pnevmokokkovoi infektsii u detei i vzroslykh: Methodological recommendations. Baranov AA, Namazova-Baranova LS, Briko NI, eds.; Union of Pediatricians of Russia. Moscow: Pediatr; 2023. 92 p. (In Russ).
354. Pneumococcal vaccines WHO position paper — 2012. Wkly Epidemiol Rec. 2012;87(14):129–144.
355. Chuchalin AG, Bilichenko TN, Osipova GL, et al. Vaktsinoprofilaktika boleznei organov dykhaniya v ramkakh pervichnoi mediko-sanitarnoi pomoshchi naseleniyu. Pul’monologiya. Prilozhenie. 2015;(2):3–19. (In Russ).
356. Capili CR, Hettinger A, Rigelman-Hedberg N, et al. Increased risk of pertussis in patients with asthma. J Allergy Clin Immunol. 2012;129(4):957–963. doi: https://doi.org/10.1016/J.JACI.2011.11.020
357. Buck PO, Meyers JL, Gordon LD, et al. Economic burden of diagnosed pertussis among individuals with asthma or chronic obstructive pulmonary disease in the USA: an analysis of administrative claims. Epidemiol Infect. 2017;145(10):2109–2121. doi: https://doi.org/10.1017/S0950268817000887
358. Harju TH, Leinonen M, Nokso-Koivisto J, et al. Pathogenic bacteria and viruses in induced sputum or pharyngeal secretions of adults with stable asthma. Thorax. 2006;61(7):579–584. doi: https://doi.org/10.1136/THX.2005.056291
359. Mbayei SA, Faulkner A, Miner C, et al. Severe Pertussis Infections in the United States, 2011–2015. Clin Infect Dis. 2019;69(2):218–226. doi: https://doi.org/10.1093/CID/CIY889
360. Bateman ED, Bousquet J, Keech ML, et al. The correlation between asthma control and health status: the GOAL study. Eur Respir J. 2007;29(1):59–63. doi: https://doi.org/10.1183/09031936.00128505
361. Sont JK. How do we monitor asthma control? Allergy. 1999;54 Suppl 49:68–73. doi: https://doi.org/10.1111/J.1398-9995.1999.TB04391.X
362. Schatz M, Rachelefsky G, Krishnan JA. Follow-up after acute asthma episodes: what improves future outcomes? Proc Am Thorac Soc. 2009;6(4):386–393. doi: https://doi.org/10.1513/PATS.P09ST6
363. Ducharme FM, Bhogal SK. The role of written action plans in childhood asthma. Curr Opin Allergy Clin Immunol. 2008;8(2): 177–188. doi: https://doi.org/10.1097/ACI.0B013E3282F7CD58
364. Gibson PG, Powell H. Written action plans for asthma: an evidencebased review of the key components. Thorax. 2004;59(2):94–99. doi: https://doi.org/10.1136/THORAX.2003.011858
365. Al-Awaisheh RI, Alsayed AR, Basheti IA. Assessing the Pharmacist’s Role in Counseling Asthmatic Adults Using the Correct Inhaler Technique and Its Effect on Asthma Control, Adherence, and Quality of Life. Patient Prefer Adherence. 2023;17:961–972. doi: https://doi.org/10.2147/PPA.S395258
366. Melani AS, Bonavia M, Cilenti V, et al. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir Med. 2011;105(6):930–938. doi: https://doi.org/10.1016/J.RMED.2011.01.005
367. Rodrigues Pacheco D, Vieira C, Freitas I, et al. Optimization of Inhalation Technique Knowledge in the Pharmacies of Matosinhos Municipality, Portugal: An Intervention Project. Cureus. 2023;15(12):e50655. doi: https://doi.org/10.7759/cureus.50655
368. Alotaibi MM, Hughes L, Ford WR. Assessing Inhaler Techniques of Asthma Patients Using Aerosol Inhalation Monitors (AIM): A Cross Sectional Study. Healthcare (Basel). 2023;11(8):1125. doi: https://doi.org/10.3390/healthcare11081125
369. Basheti IA, Reddel HK, Armour CL, Bosnic-Anticevich SZ. Improved asthma outcomes with a simple inhaler technique intervention by community pharmacists. J Allergy Clin Immunol. 2007;119(6):1537–1538. doi: https://doi.org/10.1016/J.JACI.2007.02.037
370. Loke YK, Blanco P, Thavarajah M, Wilson AM. Impact of Inhaled Corticosteroids on Growth in Children with Asthma: Systematic Review and Meta-Analysis. PloS One. 2015;10(7):e0133428. doi: https://doi.org/10.1371/JOURNAL.PONE.0133428
371. Brown PH, Blundell G, Greening AP, Crompton GK. Hypothalamopituitary-adrenal axis suppression in asthmatics inhaling high dose corticosteroids. Respir Med. 1991;85(6):501–510. doi: https://doi.org/10.1016/S0954-6111(06)80268-4
372. Schatz M, Sorkness CA, Li JT, et al. Asthma Control Test: reliability, validity, and responsiveness in patients not previously followed by asthma specialists. J Allergy Clin Immunol. 2006;117(3):549–556. doi: https://doi.org/10.1016/J.JACI.2006.01.011
373. Schatz M, Mosen DM, Kosinski M, et al. Validity of the Asthma Control Test completed at home. Am J Manag Care. 2007;13(12):661–667.
374. Liu AH, Zeiger R, Sorkness C, et al. Development and cross-sectional validation of the Childhood Asthma Control Test. J Allergy Clin Immunol. 2007;119(4):817–825. doi: https://doi.org/10.1016/J.JACI.2006.12.662
375. Juniper EF, O’Byrne PM, Guyatt GH, et al. Development and validation of a questionnaire to measure asthma control. Eur Respir J. 1999;14(4):902–907. doi: https://doi.org/10.1034/j.1399-3003.1999.14d29.x
376. Chipps B, Zeiger RS, Murphy K, et al. Longitudinal validation of the Test for Respiratory and Asthma Control in Kids in pediatric practices. Pediatrics. 2011;127(3):737–747. doi: https://doi.org/10.1542/peds.2010-1465
377. Haselkorn T, Fish JE, Zeiger RS, et al. Consistently very poorly controlled asthma, as defined by the impairment domain of the Expert Panel Report 3 guidelines, increases risk for future severe asthma exacerbations in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. J Allergy Clin Immunol. 2009;124:895–902.e1–4. doi: https://doi.org/10.1016/j.jaci.2009.07.035
378. Murray CS, Poletti G, Kebadze T, et al. Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax. 2006;61(5):376–382. doi: https://doi.org/10.1136/thx.2005.042523
379. Mazenq J, Dubus JC, Gaudart J, et al. City housing atmospheric pollutant impact on emergency visit for asthma: A classification and regression tree approach. Respir Med. 2017;132:1–8. doi: https://doi.org/10.1016/j.rmed.2017.09.004
380. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–1343.
381. Hagan JB, Samant SA, Volcheck GW, et al. The risk of asthma exacerbation after reducing inhaled corticosteroids: a systematic review and meta-analysis of randomized controlled trials. Allergy. 2014;69(4):510–516. doi: https://doi.org/10.1111/ALL.12368
382. Terekhova EP, Sebekina OV, Nenasheva NM, Terekhov DV. The right choice of inhalation device as a factor of increasing adherence to the prescribed therapy in a patient with bronchial asthma. Practical Allergology. 2021;(2);54–65. (In Russ). doi: https://doi.org/10.46393/2712-9667_2021_2_54_65
383. Nenasheva NM. Bronkhial’naya astma. Sovremennyi vzglyad na problemu. Moscow: GEOTAR-Media; 2018. 304 p. (In Russ).
Review
For citations:
Avdeev S.N., Aysanov Z.R., Arkhipov V.V., Astaphieva N.G., Baranov A.A., Belevskiy A.S., Bukhtiyarov I.V., Vasilyeva O.S., Vishneva E.A., Geppe N.A., Demko I.V., Emel’yanov A.V., Ignatova G.L., Il’ina N.I., Knyazheskaya N.P., Kurbacheva O.M., Levina Yu.G., Leshchenko I.V., Malakhov A.B., Meshcheryakova N.N., Namazova-Baranova L.S., Nenasheva N.M., Novik G.A., Pavlova K.S., Pampura A.N., Selimzyanova L.R., Strizhakov L.A., Fomina D.S., Haitov M.R., Chuchalin A.G., Shishimorov I.N., Shpagina L.A., Efendieva K.E. Asthma Management Current Guidelines. Pediatric pharmacology. 2025;22(4):432-494. (In Russ.) https://doi.org/10.15690/pf.v22i4.2938