Functional Aspects of TRPC Channels in Physiology and Clinical Practice: a Systematic Review
https://doi.org/10.15690/pf.v22i3.2912
Abstract
This article provides a systematic review of current research on the role of transient receptor potential calcium (TRPC) channels in various pathophysiological processes. The mechanisms of activation and regulation of canonical transient receptor potential channels and their significance in the context of channelopathy-related diseases are considered. Special attention has been given to various points of view on the functioning of TRPC-channels and their interaction with compounds such as diacylglycerol and STIM1 protein. The review highlights the importance of TRPC channels in regulating cellular function, including vascular tone, renal filtration, and cardiac hypertrophy, as well as mediating cellular responses to hormones and growth factors. Research suggests that TRPC channels exhibit multi-level activity, making them attractive targets for pharmacological interventions. As key elements in the pathogenesis of various diseases, from cardiovascular to neurological and immune disorders, TRPCs can serve as a foundation for the development of innovative therapeutic strategies. The article highlights the potential for therapeutic intervention, creating opportunities for the development of targeted therapies that focus on the mechanisms of specific diseases. The aim of this review is to analyze and summarize current scientific research on the role of TRPC in pathophysiological processes, the mechanisms of TRPC activation and regulation, and the identification of mechanisms for the development of diseases in channelopathies. In addition, the review opens up a new field for further research, emphasizing the importance of studying the interactions of TRPC with other signaling systems, such as G-proteins and tyrosine kinase receptors, which could lead to the development of more comprehensive combined therapeutic approaches. Thus, the article offers insights into the complex pathophysiological roles of TRPCs and their potential pharmacological applications.
About the Authors
Razina R. NigmatullinaRussian Federation
PhD, Professor.
49, Butlerova Str., Kazan, 420012
Disclosure of interest:
Not declared
Dinara I. Sadykova
Russian Federation
MD, PhD, Professor, Corresponding member of the Academy of Sciences of the Republic of Tatarstan.
Disclosure of interest:
Not declared
Ilnara R. Sakhipgaraeva
Russian Federation
MD.
Kazan
Disclosure of interest:
Not declared
Evgeniya S. Slastnikova
Russian Federation
MD, PhD.
Kazan
Disclosure of interest:
Not declared
Aleksey V. Bezbryazov
Russian Federation
MD.
Kazan
Disclosure of interest:
Not declared
References
1. Tsirkin VI, Sizova EN. Ca-Channels Controlled by Calcium Depot (Literature Review). Progress in Physiological Science. 2020;51(2):37–54. (In Russ). doi: https://doi.org/10.31857/S0301179820020101
2. Gusev KO, Alekseenko VA, Kaznacheeva EV, Mozhaeva GN. Vliyanie perestroek aktinovogo tsitoskeleta na aktivnost’ depoupravlyaemykh kal’tsievykh kanalov. In: Konferentsiya “Biologiya — nauka XXI veka”. Pushchino; 2002. Vol. 1. pp. 10–11. (In Russ).
3. Tsirkin VI, Sizova EN. Molekulyarnye mekhanizmy adaptatsii na primere Sa-kanalov, upravlyaemykh kal’tsievym depo: Monograph. Kirov: Kirov State Medical University; 2019. 102 p. (In Russ).
4. Ambudkar IS, Ong HL, Liu X, et al. TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium. 2007;42(2):213–223. doi: https://doi.org/10.1016/j.ceca.2007.01.013
5. Galan C, Woodard GE, Dionisio N, et al. Lipid rafts modulate the activation but not the maintenance of store-operated Ca2+ entry. Biochim Biophys Acta. 2010;1803(9):1083–1093. doi: https://doi.org/10.1016/j.bbamcr.2010.06.006
6. Ma HT, Peng Z, Hiragun T, et al. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line.j Immunol. 2008;180(4):2233–2239. doi: https://doi.org/10.4049/jimmunol.180.4.2233
7. Madsen CP, Klausen TK, Fabian A, et al. On the role of TRPC1 in control of Ca2+ influx, cell volume, and cell cycle. Am J Physiol Cell Physiol. 2012;303(6):C625–C634. doi: https://doi.org/10.1152/ajpcell.00287.2011
8. Tang J, Lin Y, Zhang Z, et al. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels.j Biol Chem. 200115;276(24):21303–21310. doi: https://doi.org/10.1074/jbc.M102316200
9. Venkatachalam K, Ma HT, Ford DL, Gill DL. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells.j Biol Chem. 2001;276(36):33980–33985. doi: https://doi.org/10.1074/jbc.C100321200
10. Zhang S, Yeromin A, Zhang X, et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A. 2006;103(24):9357– 9362. doi: https://doi.org/10.1073/pnas.0603161103
11. Kiselyov K, Patterson RL. The integrative function of TRPC channels. Front Biosci (Landmark Ed). 2009;14(1):45–58. doi: https://doi.org/10.2741/3230
12. Wu X, Eder P, Chang B, Molkentin JD. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A. 2010;107(15):7000–7005. doi: https://doi.org/10.1073/pnas.1001825107
13. Inoue R, Okada T, Onoue H, et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res. 2001;88(3):325–332. doi: https://doi.org/10.1161/01.res.88.3.325
14. Kim J, Ko J, Myeong J, et al. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch. 2019;471(8):1045– 1053. doi: https://doi.org/10.1007/s00424-019-02289-w
15. Ordaz B, Tang J, Xiao R, et al. Calmodulin and calcium interplay in the modulation of TRPC5 channelactivity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. Chem. 2005;280(35):30788–30796. doi: https://doi.org/101074/jbc.M504745200
16. Chen X, Sooch G, Demaree IS, et al. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells. 2020;9(9):1983. doi: https://doi.org/10.3390/cells9091983
17. Wang H, Cheng X, Tian J, et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020;209:107497. doi: https://doi.org/10.1016/j.pharmthera.2020.107497
18. Khairatkar-Joshi N, Shah DM, Mukhopadhyay I, et al. TRPC channel modulators and their potential therapeutic applications. Pharm Pat Anal. 2015;4(3):207–218. doi: https://doi.org/10.4155/ppa.15.7
19. Liu H, Fu M, Zhang Y, et al. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today. 2024;29(5):103951. doi: https://doi.org/10.1016/j.drudis.2024.103951
20. Minard A, Bauer CC, Wright DJ, et al. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Cells. 2018;7(6):52. doi: https://doi.org/10.3390/cells7060052
21. Bon RS, Beech DJ. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -mirage or pot of gold? Br J Pharmacol. 2013;170(3):459–474. doi: https://doi.org/10.1111/bph.12274
22. Yamaguchi Y, Iribe G, Nishida M, Naruse K. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Prog Biophys Mol Biol. 2017;130(Pt B):264–272. doi: https://doi.org/10.1016/j.pbiomolbio.2017.06.010
23. Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda). 2014;29(5):343–360. doi: https://doi.org/10.1152/physiol.00009.2014
24. Huang J, Du W, Yao H, Wang Y. TRPC Channels in Neuronal Survival. In: TRP Channels. Zhu MX, ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 10.
25. Bouron A, Lorrain E. Cellular and molecular effects of the antidepressant hyperforin on brain cells: Review of the literature. Encephale. 2014;40(2):108–113. doi: https://doi.org/10.1016/j.encep.2013.03.004
26. Sukumaran P, Sun Y, Schaar A, et al. TRPC Channels and Parkinson’s Disease. Adv Exp Med Biol. 2017;976:85–94. doi: https://doi.org/10.1007/978-94-024-1088-4_8
27. Lu R, He Q, Wang J. TRPC Channels and Alzheimer’s Disease. Adv Exp Med Biol. 2017;976:73–83. doi: https://doi.org/10.1007/97894-024-1088-4_7
28. Zheng F. TRPC Channels and Epilepsy. Adv Exp Med Biol. 2017;976:123–135. doi: https://doi.org/10.1007/978-94-024-1088-4_11
29. Tai Y, Jia Y. TRPC Channels and Neuron Development, Plasticity, and Activities. Adv Exp Med Biol. 2017;976:95–110. doi: https://doi.org/10.1007/978-94-024-1088-4_9
30. Ding X, He Z, Zhou K, et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma.j Natl Cancer Inst. 2010;102(14):1052–1068. doi: https://doi.org/10.1093/jnci/djq217
31. Bomben VC, Turner KL, Barclay TT, Sontheimer H. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas.j Cell Physiol. 2011;226(7):1879–1888. doi: https://doi.org/10.1002/jcp.22518
32. Belkacemi T, Niermann A, Hofmann L, et al. TRPC1and TRPC3dependent Ca signaling in mouse cortical astrocytes affects injuryevoked astrogliosis in vivo. Glia. 2017;65(9):1535–1549. doi: https://doi.org/10.1002/glia.23180
33. Trebak M, Kinet JP. Calcium signalling in T cells. Nat Rev Immunol. 2019;19(3):154–169. doi: https://doi.org/10.1038/s41577-018-0110-7
34. Wen H, Gwathmey JK, Xie LH. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Calcium regulation of T cell metabolism. Front Cardiovascul Med. 2020;7:24. doi: https://doi.org/10.3389/fcvm.2020.00024.2297-055X
35. Gil D, Diercks BP, Guse AH, Dupont G. Three-Dimensional Modelof Sub-Plasmalemmal Ca2+ Microdomains Evoked by T Cell Receptor/CD3 Complex Stimulation. Front Mol Biosci. 2022;9:811145. doi: https://doi.org/10.3389/fmolb.2022.811145
36. Wang Y, Tao A, Vaeth M, Feske S. Calcium regulation of T cell metabolism. Curr Opin Physiol. 2020;17:207–223. doi: https://doi.org/10.1016/j.cophys.2020.07.016
37. Barak P, Parekh AB. Signaling through Ca2+ Microdomains from Store-Operated CRAC Channels. Cold Spring Harb Perspect Biol. 2020;12(7):a035097. doi: https://doi.org/10.1101/cshperspect.a035097
38. Shim AH, Tirado-Lee L, Prakriya M. Structural and Functional Mechanisms of CRAC Channel Regulation.j Mol Biol. 2015;427(1):77–93. doi: https://doi.org/10.1016/j.jmb.2014.09.021
39. Shaw PJ, Qu B, Hoth M, et al. Molecular regulation of CRAC channels and their role in lymphocyte function. Cell Mol Life Sci. 2013;70(15):2637–2656. doi: https://doi.org/10.1007/s00018-012-1175-2
40. Shaw PJ, Feske S. Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci (Elite Ed). 2012;4(6):2253–2268. doi: https://doi.org/10.2741/e540
41. Erdogmus S, Concepcion AR, Yamashita M, et al. Cavβ1 regulates T cell expansion and apoptosis independently of voltagegated Ca2+ channel function. Nat Commun. 2022;13(1):2033. doi: https://doi.org/10.1038/s41467-022-29725-3
42. Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol. 2020;41(10):878–901. doi: https://doi.org/10.1016/j.it.2020.06.012
43. Clement D, Goodridge JP, Grimm C, et al. TRP Channels as Interior Designers: Remodeling the Endolysosomal Compartment in Natural Killer Cells. Front Immunol. 2020;11:753. doi: https://doi.org/10.3389/fimmu.2020.00753
44. Santoni G, Morelli MB, Amantini C, et al. Immuno-Transient Receptor Potential Ion Channels”: The Role in Monocyteand Macrophage-Mediated Inflammatory Responses. Front Immunol. 2018;9:1273. doi: https://doi.org/10.3389/fimmu.2018.01273
45. Wu J, Li Z, Deng Y, et al. Function of TRP channels in monocytes/ macrophage. Front Immunol. 2023;14:1187890. doi: https://doi.org/10.3389/fimmu.2023.1187890
46. Alavi MS, Soheili V, Roohbakhsh A. The role of transient receptor potential (TRP) channels in phagocytosis: A comprehensive review. Eur J Pharmacol. 2024;964:176302. doi: https://doi.org/10.1016/j.ejphar.2023.176302
47. Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, et al. TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch. 2010;460(1):69–76. doi: https://doi.org/10.1007/s00424-010-0835-z
48. Krishnan K, Ma Z, Björklund A, Islam MS. The role of melastatinlike subtype 5 channel in insulin secretion from rat β-cells. Pancreas. 2014;43(4):597–604. doi: https://doi.org/10.1097/MPA.00000000000000027
49. Philippaert K, Vennekens R. The Role of TRP Channels in the Pancreatic Beta-Cell. Neurobiology of TRP Channels. In: Neurobiology of TRP Channels. Boca Raton (FL): CRC Press/ Taylor & Francis; 2017. Chapter 12.
50. Rached G, Saliba Y, Maddah D, et al. TRPC3 Regulates Islet Beta-Cell Insulin Secretion. Adv Sci (Weinh). 2023;10(6):e2204846. doi: https://doi.org/10.1002/advs.202204846
51. Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci. 2022;9:895814. doi: https://doi.org/10.3389/fmolb.2022.895814
52. Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci. 2019;20(21):5277. doi: https://doi.org/10.3390/ijms20215277
53. Chen Y, Mu J, Zhu M, et al. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol. 2020;11:180. doi: https://doi.org/10.3389/fimmu.2020.00180
54. Froghi S, Grant CR, Tandon R, et al. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clinic Rev Allerg Immunol. 2021;60(2):271–292. doi: https://doi.org/10.1007/s12016-020-08824-3
55. Englisch CN, Paulsen F, Tschernig T. TRPC Channels in the Physiology and Pathophysiology of the Renal Tubular System: What Do We Know? Int J Mol Sci. 2022;24(1):181. doi: https://doi.org/10.3390/ijms24010181
56. Gigante M, Caridi G, Montemurno E, et al. TRPK6 Mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Am Soc Nephrol Clin J. 2011;6(7):1626–1634. doi: https://doi.org/10.2215/CJN.07830910
57. Dryer SE, Roshanravan H, Kim EY. TRPC channels: Regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1041–1066. doi: https://doi.org/10.1016/j.bbadis.2019.04.001
58. Plant TD. TRPs in Mechanosensing and Volume Regulation. Handb Exp Pharmacol. 2014;223:743–766. doi: https://doi.org/10.1007/978-3-319-05161-1_2
59. Eijkelkamp N, Quick K, Wood JN. Transient Receptor Potential Channels and Mechanosensation. Annu Rev Neurosci. 2013;36:519–546. doi: https://doi.org/10.1146/annurevneuro-062012-170412
60. Sharif-Naeini R, Dedman A, Folgering JHA, et al. TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch. 2008;456(3):529–540. doi: https://doi.org/10.1007/s00424-007-0432-y
61. Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. Annu Rev Neurosci. 2006;29:135–161. doi: https://doi.org/10.1146/annurev.neuro.29.051605.112958
62. Castillo K, Diaz-Franulic I, Canan J, et al Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol. 2018;15(2):021001. doi: https://doi.org/10.1088/14783975/aa9a6f
63. Gavva NR, Davis C, Lehto SG, et al. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation. Mol Pain. 2012;8:36. doi: https://doi.org/10.1186/1744-8069-8-36
64. Trebak M, St J Bird G, McKay RR, et al. Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels.j Biol Chem. 2003;278(18):16244–16252. doi: https://doi.org/10.1074/jbc.M300544200
65. Tang Q, Guo W, Zheng L, et al. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res. 2018;28(7):746– 755. doi: https://doi.org/10.1038/s41422-018-0038-2
Review
For citations:
Nigmatullina R.R., Sadykova D.I., Sakhipgaraeva I.R., Slastnikova E.S., Bezbryazov A.V. Functional Aspects of TRPC Channels in Physiology and Clinical Practice: a Systematic Review. Pediatric pharmacology. 2025;22(3):315-322. (In Russ.) https://doi.org/10.15690/pf.v22i3.2912