Preview

Pediatric pharmacology

Advanced search

Experimental Simulation in Ophthalmology as a Basis for the Development of New Ways to Prevent Blindness and Low Vision in Premature Infants: Literature Review

https://doi.org/10.15690/pf.v22i2.2869

Abstract

The literature review summarizes the results of a long-term experimental study of the pathogenesis of retinopathy of prematurity in a rat model conducted at the National Medical Research Center for Eye Diseases named after Helmholtz, as well as data from foreign authors who are the basis for finding ways to prevent the development of this disease with medication.

About the Authors

Lyudmila A. Katargina
National Medical Research Center for Eye Diseases named after Helmholtz
Russian Federation

Lyudmila A. Katargina - MD, PhD, Professor.

Moscow


Disclosure of interest:

Not declared



Tatiana A. Pavlenko
National Medical Research Center for Eye Diseases named after Helmholtz
Russian Federation

Tatyana А. Pavlenko, MD, PhD.

Moscow


Disclosure of interest:

Not declared



Olga V. Beznos
National Medical Research Center for Eye Diseases named after Helmholtz
Russian Federation

Olga V. Beznos - MD.

Moscow


Disclosure of interest:

Not declared



Natalya A. Osipova
National Medical Research Center for Eye Diseases named after Helmholtz
Russian Federation

Natalya A. Osipova - MD, PhD.

14/19, Sadovaya Chernogryazskaya Str., Moscow, 105062


Disclosure of interest:

Not declared



Anna Yu. Panova
National Medical Research Center for Eye Diseases named after Helmholtz
Russian Federation

Anna Yu. Panova - MD, PhD.

Moscow


Disclosure of interest:

Not declared



References

1. Quinn G. Retinopathy of prematurity blindness worldwide: phenotypes in the third epidemic. Eye Brain. 2016;8:31–36. doi: https://doi.org/10.2147/EB.S94436

2. Dammann O, Hartnett ME, Stahl A. Retinopathy of prematurity. Dev Med Child Neurol. 2023;65(5):625–631. doi: https://doi.org/10.1111/dmcn.15468

3. Ashton N, Ward B, Serpell G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br J Ophthalmol. 1954;38(7):397–432. doi: https://doi.org/10.1136/bjo.38.7.397

4. Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 2010;29(6):500– 519. doi: https://doi.org/10.1016/j.preteyeres.2010.05.003

5. Katargina LA, Osipova NA. The basic strategy of development an animal model of retinopathy of prematurity. Rossiyskaya pediatricheskaya oftal’mologiya = Russian Pediatric Ophthalmology. 2014;7(1):56–60. (In Russ). doi: https://doi.org/10.17816/rpoj37602]

6. Katargina LA, Chesnokova NB, Beznos OV, et al. An experimental Study of the Pathogenesis of Retinopathy of Prematurity as a Promising Direction of Search for New Medicinal Approaches to its Prevention and Treatment. Russian Ophthalmological Journal. 2016;9(1):68–72. (In Russ). doi: https://doi.org/10.21516/2072-0076-2016-9-1-68-72]

7. Katargina LA, Khoroshilova-Maslova IP, Maybogin MA, et al. Pathomorphological features of the development of experimental retinopathy of prematurity. International Journal of Applied and Fundamental Research. 2017;3(2):190–194. (In Russ). doi: https://doi.org/10.17513/mjpfi.11424]

8. Chen J, Stahl A, Hellstrom A, Smith LE. Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr. 2011;23(2):173–178. doi: https://doi.org/10.1097/MOP.0b013e3283423f35

9. Smith LE. Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res. 2004;14(Suppl. А):140–144. doi: https://doi.org/10.1016/j.ghir.2004.03.030

10. Hartnett ME, Penn JS. Mechanisms and Management of Retinopathy of Prematurity. N Engl J Med. 2012;367(26):2515–2526. doi: https://doi.org/10.1056/NEJMra1208129

11. Katargina LA, Denisova EV, Osipova NA, Panova AYu. The role of monoamines in regulation of angiogenesis and prospects of their application in retinopathy of prematurity. Rossiyskaya pediatricheskaya oftal’mologiya = Russian pediatric ophthalmology. 2018;13(2):76–80. (In Russ). doi: https://doi.org/10.18821/1993-1859-2018-13-2-76-80

12. Chakroborty D, Sarkar C, Yu H, et al. Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Krüppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A. 2011;108(51):20730–20735. doi: https://doi.org/10.1073/pnas.1108696108

13. Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol. 2010;6(12):1863–1881. doi: https://doi.org/10.2217/fon.10.142

14. Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost. 2005;3(8):1835–1842. doi: https://doi.org/10.1111/j.15387836.2005.01361.x

15. Dal Monte M, Cammalleri M, Mattei E, et al. Protective effects of β1/2 adrenergic receptor deletion in a model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2015;56(1):59–73. doi: https://doi.org/10.1167/iovs.14-15263

16. Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factorand inflammation-related pathways. Lab Invest. 2002;82(6):747– 756. doi: https://doi.org/10.1097/01.lab.0000017372.76297.eb

17. Wilkinson-Berka JL, Rana I, Armani R, Agrotis A. Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond). 2013;124(10):597–615. doi: https://doi.org/10.1042/CS20120212

18. Ola MS, Alhomida AS, Ferrario CM, Ahmad S. Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-(1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem. 2017;24(28):3104–3114. doi: https://doi.org/10.2174/0929867324666170407141955

19. Katargina LA, Khoroshilova-Maslova IP, Bondarenko NS, et al. Angiogenic properties of catecholamines from the viewpoint of the pathogenesis of retinopathy of prematurity. Russian Ophthalmological Journal. 2018;11(4):49–54. (In Russ). doi: https://doi.org/10.21516/2072-0076-2018-11-4-49-54]

20. Katargina LA, Osipova NA, Panova AYu, et al. The role of catecholamines in the development of pathological neovascularization of the retina in an experimental model of retinopathy of prematurity in rats. Proceedings of the Academy of Sciences. 2019;489(3):313–317. (In Russ). doi: https://doi.org/10.1134/S160767291906005X

21. Katargina LА, Osipova NА, Panova АY, et al. Prognostic value estimation of monoamines systemic level in retinopathy of prematurity in experiment. Sovremennye tehnologii v medicine. 2021;13(3):41–46. (In Russ). doi: https://doi.org/10.17691/stm2021.13.3.05

22. Katargina LA, Chesnokova NB, Beznos OV, et al. Angiotensin-II as a Trigger Factor in the Development of Retinopathy of Prematurity. Ophthalmology in Russia. 2020;17(4):746–751. (In Russ). doi: https://doi.org/10.18008/1816-5095-2020-4-746-751

23. Katargina LA, Chesnokova NB, Pavlenko TA, et al. Enalaprilat as a new means of preventing the development of retinopathy of prematurity. Biomeditsinskaya Khimiya. 2023;69(2):97–103 (In Russ). doi: https://doi.org/10.18097/PBMC20236902097

24. Dal Monte M, Martini D, Latina V, et al. Beta-adrenoreceptor (b-AR) agonism influences retinal responses to hypoxia in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci. 2012;53(4):2181–2192. doi: https://doi.org/10.1167/iovs.11-9408

25. Ricci B, Ricci F, Maggiano N. Oxygen-induced retinopathy in the newborn rat: morphological and immunohistological findings in animals treated with topical timolol maleate. Ophthalmologica. 2000;214(2):136–139. doi: https://doi.org/10.1159/000027483

26. Kaempfen S, Neumann RP, Jost K, Schulzke SM. Beta-blockers for prevention and treatment of retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev. 2018;3(3):CD011893. doi: https://doi.org/10.1002/14651858.CD011893

27. Stritzke A, Kabra N, Kaur S, et al. Oral propranolol in prevention of severe retinopathy of prematurity: a systematic review and metaanalysis. J Perinatol. 2019;39(12):1584–1594. doi: https://doi.org/10.1038/s41372-019-0503-x

28. Kong HB, Zheng GY, He BM, et al. Clinical efficacy and safety of propranolol in the prevention and treatment of retinopathy of prematurity: a meta-analysis of randomized controlled trials. Front Pediatr. 2021;9:631673. doi: https://doi.org/10.3389/fped.2021.631673

29. Shafique MA, Haseeb A, Uddin MMN, et al. Effectiveness of propranolol in preventing severe retinopathy of prematurity: a comprehensive systematic review and meta-analysis. Am J Ophthalmol. 2023;259:141–50. doi: https://doi.org/10.1016/j.ajo.2023.11.012

30. Filippi L, Cavallaro G, Bagnoli P, et al. Oral propranolol for retinopathy of prematurity: risks, safety concerns, and perspectives. J Pediatr. 2013;163(6):1570–1577.e6. doi: https://doi.org/10.1016/j.jpeds.2013.07.049

31. Filippi L, Cavallaro G, Bagnoli P, et al. Propranolol 0.1% eye micro-drops in newborns with retinopathy of prematurity: a pilot clinical trial. Pediatr Res. 2017;81(2):307–314. doi: https://doi.org/10.1038/pr.2016.230

32. Filippi L, Cavallaro G, Berti E, et al. Propranolol 0.2% eye micro-drops for retinopathy of prematurity: a prospective phase IIB study. Front Pediatr. 2019;7:180. doi: https://doi.org/10.3389/fped.2019.00180


Review

For citations:


Katargina L.A., Pavlenko T.A., Beznos O.V., Osipova N.A., Panova A.Yu. Experimental Simulation in Ophthalmology as a Basis for the Development of New Ways to Prevent Blindness and Low Vision in Premature Infants: Literature Review. Pediatric pharmacology. 2025;22(2):141-146. (In Russ.) https://doi.org/10.15690/pf.v22i2.2869

Views: 107


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)