Electrical instability of the myocardium in children of different ages: diagnosis, prognostic significance and principles of correction (literature review)
https://doi.org/10.15690/pf.v22i1.2855
Abstract
varying degrees of risk of life-threatening conditions. Today, the problem of diagnosis and clinical interpretation of EIM in newborns is particularly acute due to anatomical and physiological features and comorbid conditions, as well as in children and adolescents with organic heart diseases. Studying the heterogeneity of electrocardiographic (ECG) morphology of cardiac cycles may have prognostic value for the prevention of arrhythmic events. The article provides an overview of modern scientific data on the signs of EIM in children, including the newborn period, formed into two large groups: depolarization and repolarization disorders. ECG criteria for EIM in children of different ages with congenital (primary) electrical diseases and acquired conditions, including COVID-19, are discussed. The methods of medical correction of ENM in newborns and children in subsequent age periods are highlighted. The totality of the data presented dictates the need for further study of the prognostic significance of EIM and methods of its correction.
About the Authors
Larisa A. BalykovaRussian Federation
MD, PhD, Professor, Corresponding Member of the RAS
68, Bolshevistskaya Str., 430005, Saransk
Disclosure of interest:
Not declared.
Denis O. Vladimirov
Russian Federation
MD
Saransk
Disclosure of interest:
Not declared.
Evgenia N. Tyagusheva
Russian Federation
student
Saransk
Disclosure of interest:
Not declared.
Marina V. Shirmankina
Russian Federation
MD
Saransk
Disclosure of interest:
Not declared.
Anna V. Krasnopolskaya
Russian Federation
MD, PhD
Saransk
Disclosure of interest:
Not declared.
Elena I. Naumenko
Russian Federation
MD, PhD
Saransk
Disclosure of interest:
Not declared.
References
1. Nareeba T, Dzabeng F, Alam N, et al. Neonatal and child mortality data in retrospective population-based surveys compared with prospective demographic surveillance: EN-INDEPTH study. Popul Health Metrics. 2021;19(Suppl 1):7. doi: https://doi.org/10.1186/s12963-020-00232-1
2. Korableva NN, Pershina EN, Gusev VA, et al. The prevalence of symptoms of life-threatening events in children of the first year of life: a single-stage population study. Voprosy sovremennoi pediatrii — Current Pediatrics. 2019;18(2):109–117. (In Russ). doi: https://doi.org/10.15690/vsp.v18i2.2013]
3. Krutova AV, Kotlukova NP, Simonova LV, et al. Features of the course and prognosis of heart rhythm and conduction disorders in children of the first year of life. Pediatria. Journal n.a. G.N. Speransky. 2015;94(2):13–18. (In Russ).]
4. Ganea G, Cinteză EE, Filip C, et al. Postoperative Cardiac Arrhythmias in Pediatric and Neonatal Patients with Congenital Heart Disease-A Narrative Review. Life (Basel). 2023;13(12):2278. doi: https://doi.org/10.3390/life13122278
5. Kovalev IA, Khamnagadaev IA, Svintsova LI, et al. Supraventricular (supraventricular) tachycardias in children. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2019:6(3):133–143. (In Russ). doi: https://doi.org/10.15690/pf.v16i3.2024]
6. Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. Inherited cardiac arrhythmias. Nat Rev Dis Primers. 2020;6(1):58. doi: https://doi.org/10.1038/s41572-020-0188-7
7. Balykova LA, Shirmankina MV, Ivyansky SA, et al. Electric myocardial instability in children and adolescents. Annals of the Russian academy of medical sciences. 2024;79(1):52–59. (In Russ). doi: https://doi.org/10.15690/vramn13996]
8. Pimenta MS, Samesima N, Pastore CA, et al. Electrocardiographic Evaluation of Normal Newborns in the First Week of Life — Observational Study. Arq Bras Cardiol. 2022;119(4):587–592. doi: https://doi.org/10.36660/abc.20210843
9. Lutfullin IYa, Safina AI, Sadykova ZR. Clinical interpretation of electrocardiograms in the practice of a neonatologist. The Bulletin of Contemporary Clinical Medicine. 2013;6(6):108–114. (In Russ).]
10. Molin J, Hartmann J, Pærregaard M, et al. The neonatal QRS complex and its association with left ventricular mass. Pediatr Cardiol. 2024;45(2):248–256. doi: https://doi.org/10.1007/s00246-023-03361-0
11. Ukena C, Mahfoud F, Kindermann I, et al. Prognostic electrocardiographic parameters in patients with suspected myocarditis. Eur J Heart Fail. 2011;13(4):398–405. doi: https://doi.org/10.1093/eurjhf/hfq229
12. Bassareo PP, Mercuro G. QRS Complex Enlargement as a Predictor of Ventricular Arrhythmias in Patients Affected by Surgically Treated Tetralogy of Fallot: A Comprehensive Literature Review and Historical Overview. ISRN Cardiol. 2013;2013:782508. doi: https://doi.org/10.1155/2013/782508
13. Dao DT, Hollander SA, Rosenthal DN, et al. QRS prolongation is strongly associated with life-threatening ventricular arrhythmias in children with dilated cardiomyopathy. J Heart Lung Transplant. 2013;32(10):1013–1019. doi: https://doi.org/10.1016/j.healun.2013.06.007
14. Fouzas S, Karatza AA, Davlouros PA, et al. Heterogeneity of ventricular repolarization in newborns with intrauterine growth restriction. Early Hum Dev. 2014;90(12):857–862. doi: https://doi.org/10.1016/j.earlhumdev.2014.09.009
15. Владимиров Д.О. Состояние сердечно-сосудистой системы у новорожденных, рожденных от матерей с новой коронавирусной инфекцией: дис. ... канд. мед. наук. — Саратов; 2024. [Vladimirov DO. Sostoyanie serdechno-sosudistoi sistemy u novorozhdennykh, rozhdennykh ot materei s novoi koronavirusnoi infektsiei. [dissertation]. Saratov; 2024. (In Russ).] Доступно по: https://rusneb.ru/catalog/000199_000009_012857218. Ссылка активна на 01.09.2024.
16. Murakoshi Y, Hoshino K. Treatment strategy for acute myocarditis in pediatric patients requiring emergency intervention. BMC Pediatr. 2023;23(1):384. doi: https://doi.org/10.1186/s12887-023-04200-0
17. Engstrom N, Dobson G, Ng K, et al. Fragmented QRS is associated with ventricular arrhythmias in heart failure patients: A systematic review and meta-analysis. Ann Noninvasive Electrocardiol. 2022;27(1):12910. doi: https://doi.org/10.1111/anec.12910
18. Kong Y, Song J, Kang IS, et al. Clinical Implications of Fragmented QRS Complex as an Outcome Predictor in Children with Idiopathic Dilated Cardiomyopathy. Pediatr Cardiol. 2021;42(2):255–263. doi: https://doi.org/10.1007/s00246-020-02473-1
19. Bueno-Palomeque FL, Mountris KA, Ortigosa N, et al. QRS-T Angles as Markers for Heart Sphericity in Subjects With Intrauterine Growth Restriction: A Simulation Study. IEEE J Biomed Health Inform. 2023;27(10):4707–4718. doi: https://doi.org/10.1109/JBHI.2023.3297550
20. Bergfeldt L, Bergqvist G, Lingman M, et al. Spatial peak and mean QRS-T angles: A comparison of similar but different emerging risk factors for cardiac death. J Electrocardiol. 2020;61:112–120. doi: https://doi.org/10.1016/j.jelectrocard.2020.05.013
21. Rautaharju PM, Davignon A, Soumis F, et al. Evolution of QRS-T relationship from birth to adolescence in Frank-lead orthogonal electrocardiograms of 1492 normal children. Circulation. 1979;60(1):196–204. doi: https://doi.org/10.1161/01.cir.60.1.196
22. Hnatkova K, Seegers J, Earthel P, et al. Clinical value of different QRS-T angle expression. Europace. 2018;20(18):1352–1361. doi: https://doi.org/10.1093/europace/eux246
23. Fischer K, Marggraf M, Stark AW, et al. Association of ECG parameters with late gadolinium enhancement and outcome in patients with clinical suspicion of acute or subacute myocarditis referred for CMR imaging. PLoS One. 2020;15(1):e0227134. doi: https://doi.org/10.1371/journal.pone.0227134
24. Bogatyreva MM-B. Late ventricular potentials and their significance for clinical practice. International Journal of Heart and Vascular Diseases. 2018;6(20):4–14. (In Russ). doi: https://doi.org/10.24412/2311-1623-2018-20-4-14]
25. Corrado D, Anastasakis A, Basso C, et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol. 2024;395:131447. doi: https://doi.org/10.1016/j.ijcard.2023.131447
26. Bobkowski WA, Siwiska A, Zachwieja J. Prospective study to determine the significance of ventricular late potentials in children with mitral valvar prolapse. Cardiology in the young. 2002;12(4):333–338. doi: https://doi.org/10.1017/s1047951100012920
27. Vladimirov DO, Balykova LA, Shirmankina MV, et al. Cardiovascular system in newborns born to mothers who had a new coronavirus infection during pregnancy. Pediatria. Journal n.a. G.N. Speransky. 2023;102(5):78–89. (In Russ). doi: https://doi.org/10.24110/0031-403X-2023-102-5-78-89]
28. Lue HC, Wu MH, Wang JK, et al. Normal ECG standards and percentile charts for infants, children and adolescents. Pediatr Neonatol. 2023;64(3):256–273. doi: https://doi.org/10.1016/j.pedneo.2022.07.013
29. Bernardini A, Crotti L, Olivotto I, et al. Diagnostic and prognostic electrocardiographic features in patients with hypertrophic cardiomyopathy. Eur Heart J Suppl. 2023;25(Suppl C):173–178. doi: https://doi.org/10.1093/eurheartjsupp/suad074
30. Mei X, Li F, Fu LJ, et al. Clinical characteristics of anomalous origin of the left coronary artery from the pulmonary artery in 91 children. Zhonghua Er Ke Za Zhi.. 2019;57(8):614–619. doi: https://doi.org/10.3760/cma.j.issn.0578-1310.2019.08.009
31. Caforio AL, Pankuweit S, Arbustini E, et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–2648, 2648a–2648d. doi: https://doi.org/10.1093/eurheartj/eht210
32. Mohammadi H, Fereidooni R, Mehdizadegan N, et al. Q wave in paediatric myocarditis: an underinvestigated, readily available prognostic factor. Acta Cardiol. 2023;78(7):813–822. doi: https://doi.org/10.1080/00015385.2022.2148896
33. Östman-Smith I, Sjöberg G, Rydberg A, et al. Predictors of risk for sudden death in childhood hypertrophic cardiomyopathy: the importance of the ECG risk score. Open Heart. 2017;4(2):e000658. doi: https://doi.org/10.1136/openhrt-2017-000658
34. Viliani D, Pozo E, Aguirre N, et al. Helical distribution of hypertrophy in patients with hypertrophic cardiomyopathy: prevalence and clinical implications. Int J Cardiovasc Imaging. 2017;33(11):1771–1780. doi: https://doi.org/10.1007/s10554-017-1161-8
35. Makarov LM. Holterovskoe monitorirovanie. Moscow: Medical practice-M; 2013. 696 p. (In Russ).]
36. Bratincsák A, Williams M, Kimata C, et al. The electrocardiogram is a poor diagnostic tool to detect left ventricular hypertrophy in children: a comparison with echocardiographic assessment of left ventricular mass. Congenit Heart Dis. 2015;10(4):164–171. doi: https://doi.org/10.1111/chd.12249
37. Mariani MV, Pierucci N, Fanisio F, et al. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. Medicina. 2024;60(1):94. doi: https://doi.org/10.3390/medicina60010094
38. Moturu A, Bhuchakra HP, Bodar YP, et al. Unmasking a Silent Killer and Understanding Sudden Cardiac Death in Brugada Syndrome: A Traditional Review. Cureus. 2023;15(6):e41076. doi: https://doi.org/10.7759/cureus.41076
39. Jellins J, Milanovic M, Taitz DJ, et al. Brugada syndrome. Hong Kong Med J. 2013;19(2):159–167.
40. Wu W, Tian L, Ke J, et al. Risk factors for cardiac events in patients with Brugada syndrome: A PRISMA-compliant metaanalysis and systematic review. Medicine. 2016;95(30):e4214. doi: https://doi.org/10.1097/MD.0000000000004214
41. Gaita F, Cerrato N, Giustetto C, et al. Asymptomatic Patients with Brugada ECG Pattern: Long-Term Prognosis From a Large Prospective Study. Circulation. 2023;148(20):1543–1555. doi: https://doi.org/10.1161/CIRCULATIONAHA.123.064689
42. Corrado D, Zorzi A, Cipriani A, et al. Evolving diagnostic criteria for arrhythmogenic cardiomyopathy. J Am Heart Assoc. 2021;10(18):021987. doi: https://doi.org/10.1161/JAHA.121.021987
43. Perrin MJ, Angaran P, Laksman Z, et al. Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2013;62(19):1772–1779. doi: https://doi.org/10.1016/j.jacc.2013.04.084
44. Nyholm BC, Ghouse J, Lee CJ, et al. Fascicular heart blocks and risk of adverse cardiovascular outcomes: Results from a large primary care population. Heart Rhythm 2022;19(2):252–259. doi: https://doi.org/10.1016/j.hrthm.2021.09.041
45. Calò L, Della Bona R, Martino A, et al. Left posterior fascicular block and increased risk of sudden cardiac death in young people. J Am Coll Cardiol.. 2021;77(8):1143–1145. doi: https://doi.org/10.1016/j.jacc.2020.12.033
46. Rajakumar PS, Bhat BV, Sridhar MG, et al. Cardiac enzyme levels in myocardial dysfunction in newborns with perinatal asphyxia. Indian J Pediatr. 2008;75(12):1223–1225. doi: https://doi.org/10.1007/s12098-008-0242- z
47. Novodvorsky P, Bernjak A, Chow E, et al. Diurnal Differences in Risk of Cardiac Arrhythmias During Spontaneous Hypoglycemia in Young People With Type 1 Diabetes. Diabetes Care. 2017;40(5):655–662. doi: https://doi.org/10.2337/dc16-2177
48. Balykova LA, Shirmankina MV, Parshina TS, et al. Children’s multisystem inflammatory syndrome associated with COVID-19: focus on cardiovascular system. Children’s Heart and Vascular Diseases. 2022;4(19):272–284. (In Russ). doi: https://doi.org/10.24022/1810-0686-2022-19-4-272-284]
49. Ece İ, Koçoğlu M, Kavurt AV, et al. Assessment of Cardiac Arrhythmic Risk in Children With Covid-19 Infection. Pediatric Cardiol. 2021;42(2):264–268. doi: https://doi.org/10.1007/s00246-020-02474-0
50. Zorzi A, Perazzolo Marra M, Rigato I, et al. Nonischemic Left Ventricular Scar as a Substrate of Life-Threatening Ventricular Arrhythmias and Sudden Cardiac Death in Competitive Athletes. Circ Arrhythm Electrophysiol. 2016;9(7):e004229. doi: https://doi.org/10.1161/CIRCEP.116.004229
51. Pérez-Riera AR, Abreu LC, Yanowitz F, et al. Benign early repolarization versus malignant early abnormalities: clinical-electrocardiographic distinction and genetic basis. Cardiol J. 2012;19(4):337–346. doi: https://doi.org/10.5603/cj.2012.0063
52. Wang G, Zhao N, Zhang C, et al. Lambda-like ST-segment elevation in acute myocardial infarction triggered by coronary spasm may be a new risk predictor for lethal ventricular arrhythmia: A case report. Medicine (Baltimore). 2018;97(49):e13561. doi: https://doi.org/10.1097/MD.0000000000013561
53. Tse G, Yan BP. Traditional and novel electrocardiographic conduction and repolarization markers of sudden cardiac death. Europace. 2017;19(5):712–721. doi: https://doi.org/10.1093/europace/euw280, 2-s2.0-85026437590
54. Zhu W, Huang X, Mei L, et al. The predictive value of Tp-Te interval, Tp-Te/QT ratio, and QRS-T angle of idiopathic ventricular tachycardia in patients with ventricular premature beats. Clin Cardiol. 2023;46(4):425–430. doi: https://doi.org/10.1002/clc.23998
55. Takeguchi M, Kusumoto S, Sekiguchi K, et al. Predicting Long-Term Ventricular Arrhythmia Risk in Children with Acute Lymphoblastic Leukemia Using Normal Values of Ventricular Repolarization Markers Established from Japanese Cohort Study. J Clin Med. 2023;12(14):4723. doi: https://doi.org/10.3390/jcm12144723
56. Suzuki D, Suzuki T, Fujino M, et al. The electrophysiological index can effectively predict subsequent coronary artery aneurysm in children with Kawasaki disease. Fujita Med J. 2023;9(4):275–281. doi: https://doi.org/10.20407/fmj.2023-001
57. Tashiro N, Muneuchi J, Ezaki H, et al. Ventricular Repolarization Dispersion is a Potential Risk for the Development of Life-Threatening Arrhythmia in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol. 2022;43(7):1455–1461. doi: https://doi.org/10.1007/s00246-022-02867-3
58. Braun CC, Zink MD, Gozdowsky S, et al. A Longer Tpeak-Tend Interval Is Associated with a Higher Risk of Death: A Meta-Analysis. J Clin Med. 2023;12(3):992. doi: https://doi.org/10.3390/jcm12030992
59. Sato A, Saiki H, Kudo M, et al. Chronological T-wave alternation before and after the onset of arrhythmogenic right ventricular cardiomyopathy. Ann Noninvasive Electrocardiol. 2022;27(6):e12965. doi: https://doi.org/10.1111/anec.12965
60. Isserman RS, Simpao AF, Schwartz AJ, et al. T-wave Alternans and Long QT Syndrome. Anesthesiology. 2017;127(3):567. doi: https://doi.org/10.1097/ALN.0000000000001618
61. Makarov L, Komoliatova V. Microvolt T-wave alternans during Holter monitoring in children and adolescents. Annals of Noninvasive Electrocardiol. 2010;15(2):138–144. doi: https://doi.org/10.1111/j.1542-474X.2010.00354.x
62. Tan C, Yi X, Chen Y, et al. The Changes of T-Wave Amplitude and QT Interval Between the Supine and Orthostatic Electrocardiogram in Children With Dilated Cardiomyopathy. Front Pediatr. 2021;9:680923. doi: https://doi.org/10.3389/fped.2021.680923
63. Simma A, Potapow A, Brandstetter S, et al. Electrocardiographic Screening in the First Days of Life for Diagnosing Long QT Syndrome: Findings from a Birth Cohort Study in Germany. Neonatology. 2020;117(6):756–763. doi: https://doi.org/10.1159/000511572
64. Schwartz PJ, Stramba-Badiale M. Repolarization abnormalities in the newborn. J Cardiovasc Pharmacol. 2010;55(6):539–543. doi: https://doi.org/10.1097/FJC.0b013e3181d86525
65. Shimamoto K, Aiba T. How Can We Evaluate Arrhythmic Risk in Children With Long QT Syndrome? Circ J. 2024;88(7):1185–1186. doi: https://doi.org/10.1253/circj.CJ-23-0884
66. Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343(4):262–267. doi: https://doi.org/10.1056/NEJM200007273430405
67. Farhat H, Kassab CJ, Tlaiss Y, et al. Hydroxychloroquine and the associated risk of arrhythmias. Glob Cardiol Sci Pract. 2024;2:e202417. doi: https://doi.org/10.21542/gcsp.2024.17
68. Nosetti L, Zaffanello M, Lombardi C, et al. Early Screening for Long QT Syndrome and Cardiac Anomalies in Infants: A Comprehensive Study. Clin Pract. 2024;14(3):1038–1053. doi: https://doi.org/10.3390/clinpract14030082
69. Michel H, Potapow A, Dechant MJ, et al. Effect of QT interval-prolonging drugs taken in pregnancy on the neonatal QT interval. Front Pharmacol. 2023;14:1193317. doi: https://doi.org/10.3389/fphar.2023.1193317
70. Hussain NM, Amin B, McDermott BJ, et al. Feasibility Analysis of ECG-Based pH Estimation for Asphyxia Detection in Neonates. Sensors (Basel). 2024;24(11):3357. doi: https://doi.org/10.3390/s24113357
71. Allegaert K, Salaets T, Ward RM, et al. Qtc intervals are prolonged in late preterm and term neonates during therapeutic hypothermia but normalize afterwards. Children. 2021;8(12):1153. doi: https://doi.org/10.3390/children8121153
72. Dubnov-Raz G, Juurlink DN, Fogelman R, et al. Antenatal use of selective serotonin-reuptake inhibitors and QT interval prolongation in newborns. Pediatrics. 2008;122(3): e710–e715. doi: https://doi.org/10.1542/peds.2008-0658
73. De Smet L, Devolder N, Salaets T, et al. QTc Interval Reference Values and Their (Non)-Maturational Factors in Neonates and Infants: A Systematic Review. Children (Basel). 2022;9(11):1771. doi: https://doi.org/10.3390/children9111771
74. Kaemingk BD, Ulrich TJ, Li M, et al. Universal Electrocardiographic Screening for Long QT Syndrome in Hospitalized Neonates. Am J Perinatol. 2020;37(3):322–325. doi: https://doi.org/10.1055/s-0039-1678605
75. Quintarelli F, DI Gioia G, Creta A, et al. Influence of gender and malnutrition on QT dispersion in a north-Malagasy children population. Minerva Pediatr (Torino). 2023;75(3):358–366. doi: https://doi.org/10.23736/S2724-5276.19.05190-9
76. van Duijvenboden S, Ramírez J, Young WJ, et al. Genetic Basis and Prognostic Value of Exercise QT Dynamics. Circ Genom Precis Med. 2020;13(4):e002774. doi: https://doi.org/10.1161/CIRCGEN.119.002774
77. Makarov L, Komoliatova V, Zevald S, et al. QT dynamicity, microvolt T-wave alternans, and heart rate variability during 24-hour ambulatory electrocardiogram monitoring in the healthy newborn of first to fourth day of life. J Electrocardiol. 2010;43(1):8–14. doi: https://doi.org/10.1016/j.jelectrocard.2009.11.001
78. Ringer S. Physiological Management of Fluid and Electrolyte Therapy in Newborns. In: Neonatology Questions and Controversies: Renal, Fluid & Electrolyte Disorder. Lorenz J, Baum MG., Brennan KG, eds. 2023. p. 62.
79. Prakhov AV. Systematization of neonatal functional cardiopathies. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2010;52(2):14–18 (In Russ).]
80. Li SN, Zhang XL, Cai GL, et al. Prognostic Significance of Frontal QRS-T Angle in Patients with Idiopathic Dilated Cardiomyopathy. potassium and magnesium in the complex prevention of complications in patients with arterial hypertension and coronary heart disease. Tverskoi meditsinskii zhurnal. 2014;(5):66–72. (In Russ).]
81. Neves R, Bains S, Bos JM, et al. Precision therapy in congenital long QT syndrome. Trends Cardiovasc Med. 2024;34(1):39–47. doi: https://doi.org/10.1016/j.tcm.2022.06.006
82. Horner SM. Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality. Meta-analysis of magnesium in acute myocardial infarction. Circulation. 1992;86(3):774–779. doi: https://doi.org/10.1161/01.cir.86.3.774
83. Dedov DV, Mukailov N, Evtyukhin I. Preparations of potassium and magnesium in the complex prevention of complications in patients with arterial hypertension and coronary heart disease. Tverskoi meditsinskii zhurnal. 2014;(5):66–72. (In Russ).]
84. Rao CC, Himaaldev GJ. STEMI in Young Befogged by Aluminum Phosphide Toxicity-Role of ECMO as Salvage Therapy and Trimetazidine and Magnesium to Suppress Arrhythmias. Indian J Crit Care Med. 2020;24(8):727–730. doi: https://doi.org/10.5005/jp-journals-10071-23533
85. Grigoryan SV, Hazarapetyan LG, Stepanyan AA. An Experience of Meldonium Use in Patients with Ventricular Arrhythmias of Ischemic Genesis. Kardiologiia. 2019;59(7):26–30. doi: https://doi.org/10.18087/cardio.2019.7.n552
86. Balestrino M. Role of Creatine in the Heart: Health and Disease. Nutrients. 2021;13(4):1215. doi: https://doi.org/10.3390/nu13041215
87. Guideri F, Acampa M, Hayek Y, Zappella M. Effects of acetyl-Lcarnitine on cardiac dysautonomia in Rett syndrome: prevention of sudden death? Pediatr Cardiol. 2005;26(5):574–577. doi: https://doi.org/10.1007/s00246-005-0784-z
88. Clark MA, Stein REK, Silver EJ, et al. Carnitine deficiency in preterm infants: A national survey of knowledge and practices. J Neonatal Perinatal Med. 2017;10(4):381–386. doi: https://doi.org/10.3233/NPM-16146
89. Weng Y, Zhang S, Huang W, et al. Efficacy of L-Carnitine for Dilated Cardiomyopathy: A Meta-Analysis of Randomized Controlled Trials. Biomed Res Int. 2021;2021:9491615. doi: https://doi.org/10.1155/2021/9491615
90. Leontieva IV, Sukhorukov VS. The significance of metabolic disorders in the genesis of cardiomyopathies and the possibility of using L-carnitine for therapeutic correction. Vestnik pediatricheskoi farmakologii i nutritsiologii. 2006;(2):12–14. (In Russ).]
91. El Feky W, El-Afify D, Abdelhai D, et al. L-carnitine decreases myocardial injury in children undergoing open-heart surgery: A randomized controlled trial. Eur J Pediatr. 2024;183(6):2783–2789. doi: https://doi.org/10.1007/s00431-024-05534-2
92. Soongswang J, Sangtawesin C, Durongpisitkul K, et al. The effect of coenzyme Q10 on idiopathic chronic dilated cardiomyopathy in children. Pediatr Cardiology. 2005;26(4):361–366. doi: https://doi.org/10.1007/s00246-004-0742-1
93. Varlashina KA, Ivyansky SA, Naumenko EI, et al. Heart rhythm disorders in young athletes: prevalence and approaches to correction using a metabolic drug. Pediatria. Journal n.a. G.N. Speransky. 2018;97(3):167–174. (In Russ). doi: https://doi.org/10.24110/0031-403X-2018-97-3-167-174]
94. Mingxing F, Landoni G, Zangrillo A, et al. Phosphocreatine in Cardiac Surgery Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth. 2018;32(2):762–770. doi: https://doi.org/10.1053/j.jvca.2017.07.024
Review
For citations:
Balykova L.A., Vladimirov D.O., Tyagusheva E.N., Shirmankina M.V., Krasnopolskaya A.V., Naumenko E.I. Electrical instability of the myocardium in children of different ages: diagnosis, prognostic significance and principles of correction (literature review). Pediatric pharmacology. 2025;22(1):62–71. (In Russ.) https://doi.org/10.15690/pf.v22i1.2855