Preview

Pediatric pharmacology

Advanced search

Potential of Using Walnuts as a Part of Nutritional Therapy for Inflammatory Bowel Diseases

https://doi.org/10.15690/pf.v22i1.2853

Abstract

Walnuts are major component of Mediterranean and Asian diets and are increasingly used in different diets around the world due to their confirmed nutritional and health benefits. Walnuts’ components are abundant with omega-3 polyunsaturated fatty acids, essential amino acids, vitamins, polyphenols, phytosterols, and other nutrients and biologically active compounds with antioxidant, anti-inflammatory and immunomodulating properties. Walnuts currently have demonstrated promising effect in inflammatory bowel diseases management. This study presents key mechanisms underlying walnuts’ therapeutic potential in inflammatory bowel diseases management, such as modulation of intestinal mucosa permeability, inflammatory processes regulation, oxidative stress reduction, and gut microbiota composition correction.

About the Authors

Andrew V. Nalyotov
Donetsk State Medical University named after M. Gorky
Russian Federation

MD, PhD, Professor

 16, Illich Avе., Donetsk, 283003, Donetsk People’s Republic 


Disclosure of interest:

 Not declared. 



Anatoly I. Khavkin
Research and Clinical Institute for Children; Belgorod State University
Russian Federation

MD, PhD, Professor

Moscow 

Belgorod


Disclosure of interest:

 Not declared. 



Alexander N. Matsynin
Donetsk State Medical University named after M. Gorky
Russian Federation

MD, PhD, Associate Professor 

Donetsk 


Disclosure of interest:

 Not declared. 



Vera S. Strionova
Donetsk State Medical University named after M. Gorky
Russian Federation

MD, PhD, Associate Professor 

Donetsk 


Disclosure of interest:

 Not declared. 



References

1. Wang R, Li Z, Liu S, Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023;13(3):e065186. doi: https://doi.org/10.1136/bmjopen-2022-065186

2. Khavkin AI, Nalyotov AV, Masyuta DI, Makhmutov RF. Role of Vitamin D in the Pathogenesis of Inflammatory Bowel Diseases: Literature Review. Voprosy sovremennoi pediatrii — Current Pediatrics. 2024;23(2):58–62. (In Russ). doi: https://doi.org/10.15690/vsp.v23i2.2722]

3. Khavkin AI, Nalyotov AV, Shumilov PV. Role of ‘OMICS’ technologies in the diagnosis of Crohn’s disease. Pediatric Nutrition. 2024;22(4):46–53. (In Russ). doi: https://doi.org/10.20953/1727-5784-2024-4-46-53]

4. Khavkin AI, Nalyotov AV, Marchenko NA. Inflammatory bowel diseases in children: modern achievements in diagnostics and therapy. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(6):7–15. (In Russ). doi: https://doi.org/10.22416/1382-4376-2023-33-6-7-15]

5. Kornienko EA, Khavkin AI, Fedulova EN, et al. Draft recommendations of the russian society of pediatric gastroenterology, hepatology and nutrition on diagnosis and treatment of Crohn’s disease in children. Experimental and Clinical Gastroenterology. 2019;171(11):100–134. (In Russ). doi: https://doi.org/10.31146/1682-8658-ecg-171-11-100-134]

6. Nalyotov AV, Khavkin AI, Matsynin AN. Curcumin — prospects for use in the treatment of diseases of the digestive system. Children’s Medicine of the North-West. 2024;12(3):49–56. (In Russ). doi: https://doi.org/10.56871/CmN-W.2024.45.37.006]

7. Khavkin AI, Nalyotov AV, Matsynina MA. Anti-inflammatory Effects of Olive Oil and Its Components.Prospects of Application in the Treatment of Inflammatory Bowel Diseases. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2024;21(3):249–255. (In Russ). doi: https://doi.org/10.15690/pf.v21i3.2754]

8. Nakanishi M, Matz A, Klemashevich C, et al. Walnut supplementation alters mucosal metabolite profiles during DSS-induced colonic ulceration. Nutrients. 2019;11(5):1118. doi: https://doi.org/10.3390/nu11051118

9. Ni ZJ, Zhang YG, Chen SX, et al. Exploration of walnut components and their association with health effects. Crit Rev Food Sci Nutr. 2021;62(19):5113–5129. doi: https://doi.org/10.1080/10408398.2021.1881439

10. Nalyotov AV, Khavkin AI, Matsynina MA, Moskaljuk ON. Nuts are an important component of a healthy diet. Nutrition. 2024;14(4):42–47. (In Russ). doi: https://doi.org/10.20953/2224-5448-2024-4-42-47]

11. Khavkin AI, Bogdanova NM, Novikova VP. Biological role of zonulin: a biomarker of increased intestinal permeability syndrome. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2021;66(1):31–38. (In Russ). doi: https://doi.org/10.21508/1027-4065-2021-66-1-31-38]

12. Bartoszek A, Makaro A, Bartoszek A, et al. Walnut oil alleviates intestinal inflammation and restores intestinal barrier function in mice. Nutrients. 2020;12(5):1302. doi: https://doi.org/10.3390/nu12051302

13. Wang G, Yang X, Wang J, et al. Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. Int J Biol Macromol. 2021;182:879–898. doi: https://doi.org/10.1016/j.ijbiomac.2021.04.047

14. Bourgonje AR, Feelisch M, Faber KN, et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol Med. 2020;26(11):1034–1046. doi: https://doi.org/10.1016/j.molmed.2020.06.006

15. Miao F, Shan C, Ma T, et al. Walnut oil alleviates DSS–induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb Pathog. 2021;154:104866. doi: https://doi.org/10.1016/j.micpath.2021.104866

16. Zhao H, Li J, Zhao J, et al. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose. Food Nutr Res. 2018:62. doi: https://doi.org/10.29219/fnr.v62.1371

17. Chen S, Wu X, Yu Z. Juglone suppresses inflammation and oxidative stress in colitis mice. Front Immunol. 2021;12:674341. doi: https://doi.org/10.3389/fimmu.2021.674341

18. Liu T, Zhang L, Joo D, et al. NF- B signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: https://doi.org/10.1038/sigtrans.2017.23

19. Koh SJ, Choi YI, Kim Y, et al. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur J Nutr. 2018;58(4):1603–1613. doi: https://doi.org/10.1007/s00394-018-1704-3

20. Nobakht NAA, Lashgari NA, Roudsari NM, et al. Juglone mediates inflammatory bowel disease through inhibition of TLR-4/NF kappaB pathway in acetic acid-induced colitis in rats. Antiinflamm Antiallergy Agents Med Chem. 2023;22(2):92–103. doi: https://doi.org/10.2174/1871523022666230825105223

21. Qi Y, Wang X, Zhang Y, et al. Walnut-derived peptide improves cognitive impairment in colitis mice induced by dextran sodium sulfate via the microbiota–gut–brain axis (MGBA). J Agric Food Chem. 2023;71(49):19501–19515. doi: https://doi.org/10.1021/acs.jafc.3c04807

22. Hong Z, Shi C, Hu X, et al. Walnut protein peptides ameliorate DSS-induced uulcerative colitis damage in mice: an in silico analysis and in vivo investigation. J Agric Food Chem. 2023;71(42):15604–15619. doi: https://doi.org/10.1021/acs.jafc.3c04220

23. Wang D, Sun M, Zhang Y, et al. Enhanced therapeutic efficacy of a novel colon-specific nanosystem loading emodin on DSS-induced experimental colitis. Phytomedicine. 2020;78:153293. doi: https://doi.org/10.1016/j.phymed.2020.153293

24. Wang D, Mu Y, Dong H, et al. Chemical constituents of the ethyl acetate extract from diaphragma juglandis fructus and their inhibitory activity on nitric oxide production in vitro. Molecules. 2017;23(1):72. doi: https://doi.org/10.3390/molecules23010072

25. Miao F, Shan C, Shah SA, et al. D. Effect of walnut (Juglans sigillata) oil on intestinal antioxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice. J Food Biochem. 2021;45(1):e13567. doi: https://doi.org/10.1111/jfbc.13567

26. He X, Chen D, Guo Y, et al. Walnut meal extracts rich in polyphenols mitigate insulin resistance and modulate gut microbiota in high fat diet-fed rats. J Med Food. 2022;25(6):618–629. doi: https://doi.org/10.1089/jmf.2021.K.0189

27. Authier H, Bardot V, Berthomier L, et al. Synergistic effects of licorice root and walnut leaf extracts on gastrointestinal candidiasis, inflammation and gut microbiota composition in mice. Microbiol Spectr. 2022;10(2):e0235521. doi: https://doi.org/0.1128/spectrum.02355-21

28. Hua Y, Liu R, Lu M, et al. Juglone regulates gut microbiota and Th17/Treg balance in DSS-induced ulcerative colitis. Int Immunopharmacol. 2021;97:107683. doi: https://doi.org/10.1016/j.intimp.2021.107683

29. Li L, Wang S, Zhang T, et al. Walnut peptide alleviates obesity,inflammation and dyslipidemia in mice fed a high-fat diet by modulating the intestinal flora and metabolites. Front Immunol. 2023;14:1305656. doi: https://doi.org/10.3389/fimmu.2023.1305656

30. Bamberger C, Rossmeier A, Lechner K, et al. A walnut-enriched diet affects gut microbiome in healthy caucasian subjects: a randomized, controlled trial. Nutrients. 2018;10(2):244. doi: https://doi.org/10.3390/nu10020244

31. Petersen KS, Chandra M, See JR, et al.Walnut consumption and gut microbial metabolism: results of an exploratory analysis from a randomized, crossover, controlled-feeding study. Clin Nutr. 2023;42(11):2258–2269. doi: https://doi.org/10.1016/j.clnu.2023.09.023

32. Holscher HD, Guetterman HM, Swanson KS, et al. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr. 2018;148(6):861–867. doi: https://doi.org/10.1093/jn/nxy004

33. Tsoukas MA, Ko BJ, Witte TR, et al. Dietary walnut suppression of colorectal cancer in mice: Mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem. 2015;26(7):776–783. doi: https://doi.org/10.1016/j.jnutbio.2015.02.009

34. Song H, Cong Z, Wang C, et al. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses. J Food Biochem. 2022;46(12):e14504. doi: https://doi.org/0.1111/jfbc.14504

35. Scaioli E, Liverany E, Belluzzi A. The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. Int J Mol Sci. 2017;18(12):2619. doi: https://doi.org/10.3390/ijms18122619

36. Federica U, Federica R, Silvio D, D’Alessio S. Actors and factors in the resolution of intestinal inflammation: Lipid mediators as a new approach to therapy in inflammatory bowel diseases. Front Immunol. 2017;8:1331. doi: https://doi.org/10.3389/fimmu.2017.01331

37. Zhang YG, Kan H, Chen SX, et al. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020;321:126672. doi: https://doi.org/10.1016/j.foodchem.2020.126672

38. Wen S, He L, Zhong Z, et al. Stigmasterol restores the balance of Treg/Th17 cells by activating the butyrate-PPARγ axis in colitis. Front Immunol. 2021;12:741934. doi: https://doi.org/10.3389/fimmu.2021.741934

39. Li X, Guo M, Chi J, Ma J. Bioactive peptides fromwalnut residue protein. Molecules. 2020;25(6):1285. doi: https://doi.org/10.3390/molecules25061285

40. Grancieri M, Martino HS, Gonzalez de Mejia E. Protein digests and pure peptides from chia seed prevented adipogenesis and inflammation by inhibiting PPARγ and NF- B pathways in 3T3L-1 adipocytes. Nutrients. 2021;13(1):176. doi: https://doi.org/10.3390/nu13010176


Review

For citations:


Nalyotov A.V., Khavkin A.I., Matsynin A.N., Strionova V.S. Potential of Using Walnuts as a Part of Nutritional Therapy for Inflammatory Bowel Diseases. Pediatric pharmacology. 2025;22(1):56–61. (In Russ.) https://doi.org/10.15690/pf.v22i1.2853

Views: 239


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)