Inflammatory Bowel Diseases and Dairy Products
https://doi.org/10.15690/pf.v21i5.2800
Abstract
At the moment, in most countries of Europe and North America, there has been a steady increase in the prevalence of inflammatory bowel diseases (IBD). There is little data on the correlation between dairy consumption and the development of IBD, despite the likely biological mechanisms linking these products with the etiopathogenesis of the disease. The exclusion of dairy products from the diet is usually associated with the occurrence of dyspeptic symptoms when they are consumed, which may indicate an exacerbation of the inflammatory process in the intestine or the presence of lactase deficiency. Patients with IBD are characterized by a high prevalence of osteoporosis, and limiting the consumption of dairy products has an even greater negative effect on the state of bone mineral density. In turn, correction of diet therapy in patients with IBD in the presence of intolerance to dairy products should be an important part of the treatment and prevention of complications of the disease.
About the Authors
Anatoly I. KhavkinRussian Federation
Anatoly I. Khavkin, MD, PhD, Professor
62, Bolshaya Serpukhovskaya Str., Moscow, 115093
Disclosure of interest:
Not declared.
Natalia М. Bogdanova
Russian Federation
Natalia М. Bogdanova MD, PhD
Saint-Petersburg
Disclosure of interest:
Not declared.
Andrew V. Nalyotov
Russian Federation
Andrew V. Nalyotov MD, PhD, Professor
Donetsk
Disclosure of interest:
Not declared.
Maria A. Matsynina
Russian Federation
Maria A. Matsynina, MD, PhD
Saint-Petersburg
Disclosure of interest:
Not declared.
Maria I. Erokhina
Russian Federation
Maria I. Erokhina, Head of the Department of Gastroenterology, Scientific Research Clinical Institution of Childhood
Moscow
Disclosure of interest:
Not declared.
References
1. Khavkin AI, Nalyotov AV, Shumilov PV, et al. Dietary aspects in the treatment of inflammatory bowel disease. Pediatric Nutrition. 2024;22(1):51–62. (In Russ). doi: https://doi.org/10.20953/1727-5784-2024-1-51-62
2. Basso PJ, Camara NOS, Sales-Campos H. Microbial-based therapies in the treatment of inflammatory bowel disease — an overview of human studies. Fron Pharmacol. 2018;9:1571. doi: https://doi.org/10.3389/fphar.2018.01571
3. Khavkin AI, Nalyotov AV, Shumilov PV, Sitkin SI. The effectiveness of dietary fiber in inflammatory bowel disease. Pediatric Nutrition. 2024;22(2):74–81. (In Russ). doi: https://doi.org/10.20953/1727-5784-2024-2-74-81
4. Collaborators GBDIBD. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30. doi: https://doi.org/10.1016/S2468-1253(19)30333-4
5. Coward S, Clement F, Benchimol EI, et al. Past and future burden of inflammatory bowel diseases based on modeling of populationbased data. Gastroenterology. 2019;156(5):1345–1353. doi: https://doi.org/10.1053/j.gastro.2019.01.002
6. Khavkin AI, Nalyotov AV, Marchenko NA. Inflammatory Bowel Diseases in Children: Modern Achievements in Diagnostics and Therapy. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023;33(6):7–15. (In Russ). doi: https://doi.org/10.22416/1382-4376-2023-33-6-7-15
7. Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review. Gastroenterology. 2022;162(4):1147– 1159. doi: https://doi.org/10.1053/j.gastro.2021.12.282
8. Belousova EA, Abdulganieva DI, Alekseeva OP, et al. Socio-demographic characteristics, features of the course and treatment options for inflammatory bowel diseases in Russia. The results of two multicenter studies. Almanac of Clinical Medicine. 2018;46(5):445–463. (In Russ). doi: https://doi.org/10.18786/2072-0505-2018-46-5-445-463
9. Hess JM, Stephensen CB, Kratz M, Bolling BW. Exploring the links between diet and inflammation: dairy foods as case studies. Adv Nutr. 2021;12(Suppl 1):1S–13S. doi: https://doi.org/10.1093/advances/nmab108
10. Nieman KM, Anderson BD, Cifelli CJ. The effects of dairy product and dairy protein intake on inflammation: a systematic review of the literature. J Am Coll Nutr. 2021;40(6):571–582. doi: https://doi.org/10.1080/07315724.2020.1800532
11. Ulven SM, Holven KB, Gil A, Rangel-Huerta OD. Milk and dairy product consumption and inflammatory biomarkers: an updated systematic review of randomized clinical trials. Adv Nutr. 2019;10(Suppl 2):S239–S250. doi: https://doi.org/10.1093/advances/nmy072
12. Díaz-López A, Bulló M, Martínez-González MA, et al. Dairy product consumption and risk of type 2 diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. Eur J Nutr. 2016;55(1):349–360. doi: https://doi.org/10.1007/s00394-015-0855-8
13. Kempinski R, Arabasz D, Neubauer K. Effects of milk and dairy on the risk and course of inflammatory bowel disease versus patients’ dietary beliefs and practices: a systematic review. Nutrients. 2024;16(15):2555. doi: https://doi.org/10.3390/nu16152555
14. Lopes MB, Rocha R, Lyra AC, et al. Restriction of dairy products; a reality in inflammatory bowel disease patients. Nutr Hosp. 2014;29(3):575–581. doi: https://doi.org/10.3305/nh.2014.29.3.7124
15. Larussa T, Suraci E, Marasco R, et al. Self-prescribed dietary restrictions are common in inflammatory bowel disease patients and are associated with low bone mineralization. Medicina (Kaunas). 2019;55(8):507. doi: https://doi.org/10.3390/medicina55080507
16. Szilagyi A, Galiatsatos P, Xue X. Systematic review and metaanalysis of lactose digestion, its impact on intolerance and nutritional effects of dairy food restriction in inflammatory bowel diseases. Nutr J. 2016;15(1):67. doi: https://doi.org/10.1186/s12937-016-0183-8
17. Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res. 2015;59(7):1249–1263. doi: https://doi.org/10.1002/mnfr.201400569
18. Garcia C, Anto L, Blesso CN. Effects of milk polar lipids on DSS-induced colitis severity are dependent on dietary fat content. Nutrients. 2022;14(23):5145. doi: https://doi.org/10.3390/nu14235145
19. Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. Milk polar lipids: underappreciated lipids with emerging health benefits. Nutrients. 2020;12(4):1001. doi: https://doi.org/10.3390/nu12041001
20. Talebi S, Zeraattalab-Motlagh S, Rahimlou M, et al. The association between total protein, animal protein, and animal protein sources with risk of inflammatory bowel diseases: A systematic review and meta-analysis of cohort studies. Adv Nutr. 2023;14(4):752– 761. doi: https://doi.org/10.1016/j.advnut.2023.05.008
21. Opstelten JL, Leenders M, Dik VK, et al. Dairy products, dietary calcium, and risk of inflammatory bowel disease: results from a European prospective cohort investigation. Inflamm Bowel Dis. 2016;22(6):1403–1411. doi: https://doi.org/10.1097/MIB.0000000000000798
22. Tsai KY, You JF, Tsai TY, et al. Improvement of ulcerative colitis control by searching and restricting of inflammatory trigger factors in daily clinical practice. Intest Res. 2023;21(1):100–109. doi: https://doi.org/10.5217/ir.2021.00110
23. Alavinejad P, Nayebi M, Parsi A, et al. Is dairy foods restriction mandatory for inflammatory bowel disease patients: a multinational cross-sectional study. Arq Gastroenterol. 2022;59(3):358–364. doi: https://doi.org/10.1590/S0004-2803.202203000-65
24. Ugidos-Rodríguez S, Matallana-González MC, Sánchez-Mata MC. Lactose malabsorption and intolerance: A review. Food Funct. 2018;9(8):4056–4068. doi: https://doi.org/10.1039/c8fo00555a
25. Naletov AV, Svistunova NA. Assessment of the state of the microbiota of the small intestine in children on a long-term dairy-free diet. Nutrition. 2022;91(2):15–20. (In Russ). doi: https://doi.org/10.33029/0042-8833-2022-91-2-15-20
26. Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738– 746. doi: https://doi.org/10.1016/S2468-1253(17)30154-1
27. Cox SR, Lindsay JO, Fromentin S, et al. Effects of Low-FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology. 2020;158(1):176–188.e7. doi: https://doi.org/10.1053/j.gastro.2019.09.024
28. Lee AD, Spiegel BM, Hays RD, et al. Gastrointestinal symptom severity in irritable bowel syndrome, inflammatory bowel disease and the general population. Neurogastroenterol Motil. 2017;29(5):10. doi: https://doi.org/10.1111/nmo.13003
29. Bodini G, Zanella C, Crespi M, et al. A randomized, 6-wk trial of a low FODMAP diet in patients with inflammatory bowel disease. Nutrition. 2019;67–68:110542. doi: https://doi.org/10.1016/j.nut.2019.06.023
30. Prince AC, Myers CE, Joyce T, et al. Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(5):1129–1136. doi: https://doi.org/10.1097/MIB.0000000000000708
31. Jasielska M, Grzybowska-Chlebowczyk U. Lactose Malabsorption and Lactose Intolerance in Children with Inflammatory Bowel Diseases. Gastroenterol Res Pract. 2019;2019:2507242. doi: https://doi.org/10.1155/2019/2507242
32. Krela-Kaźmierczak I, Michalak M, Szymczak-Tomczak A. Prevalence of osteoporosis and osteopenia in a population of patients with inflammatory bowel diseases from the Wielkopolska Region. Pol Arch Intern Med. 2018;128(7-8):447–454. doi: https://doi.org/10.20452/pamw.4292
33. De Martinis M, Allegra A, Sirufo MM, et al. Vitamin D deficiency, osteoporosis and effect on autoimmune diseases and hematopoiesis: A review. Int J Mol Sci. 2021;22(16):8855. doi: https://doi.org/10.3390/ijms22168855
34. Gubatan J, Mitsuhashi S, Zenlea T, et al. Low serum vitamin D during remission increases risk of clinical relapse in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2017;15(2):240–246. e1. doi: https://doi.org/10.1016/j.cgh.2016.05.035
35. Mechie NC, Mavropoulou E, Ellenrieder V, et al. Distinct association of serum vitamin D concentration with disease activity and trough levels of infliximab and adalimumab during inflammatory bowel disease treatment. Digestion. 2020;101(6):761–770. doi: https://doi.org/10.1159/000502515
36. Nielsen OH, Rejnmark L, Moss AC. Role of vitamin D in the natural history of inflammatory bowel disease. J Crohns Colitis. 2018;12(6):742–752. doi: https://doi.org/10.1093/ecco-jcc/jjy025
37. Khavkin AI, Nalyotov AV, Masyuta DI, Makhmutov RF. Role of Vitamin D in the Pathogenesis of Inflammatory Bowel Diseases: Literature Review. Voprosy sovremennoi pediatrii — Current Pediatrics. 2024;23(2):58–62. (In Russ). doi: https://doi.org/10.15690/vsp.v23i2.2722
38. Wu Z, Liu D, Deng F. The role of vitamin D in immune system and inflammatory bowel disease. J Inflamm Res. 2022;15:3167–3185. doi: https://doi.org/10.2147/JIR.S363840
39. Shams-White MM, Chung M, Fu Z, et al. Animal versus plant protein and adult bone health: a systematic review and metaanalysis from the national osteoporosis foundation. PLoS One. 2018;13(2):e0192459. doi: https://doi.org/10.1371/journal.pone.0192459
40. George KS, Muñoz J, Akhavan NS, et al. Is soy protein effective in reducing cholesterol and improving bone health? Food Funct. 2020;11(1):544–551. doi: https://doi.org/10.1039/c9fo01081e
41. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus Vitamin D supplementation and risk of fractures: an updated metaanalysis from the National osteoporosis foundation. Osteoporos Int. 2016;27(1):367–376. doi: https://doi.org/10.1007/s00198-015-3386-5
42. Fabiani R, Naldini G, Chiavarini M. Dietary patterns in relation to low bone mineral density and fracture risk: a systematic review and meta-analysis. Adv Nutr. 2019;10(2):219–236. doi: https://doi.org/10.1093/advances/nmy073
43. Abreu S, Agostinis-Sobrinho C, Santos R, et al. Association of dairy product consumption with metabolic and inflammatory biomarkers in adolescents: A cross-sectional analysis from the LabMed study. Nutrients. 2019;11(10):2268. doi: https://doi.org/10.3390/nu11102268
44. Malmir H, Larijani B, Esmaillzadeh A. consumption of milk and dairy products and risk of osteoporosis and hip fracture: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;60(10):1722– 1737. doi: https://doi.org/10.1080/10408398.2019.1590800
45. Bordoni A, Danesi F, Dardevet D, et al. Dairy products and inflammation: A review of the clinical evidence. Crit Rev Food Sci Nutr. 2017;57(12):2497–2525. doi: https://doi.org/10.1080/10408398.2014.967385
46. Gonzalez S, Fernandez-Navarro T, Arboleya S, et al. Fermented dairy foods: Impact on intestinal microbiota and health-linked biomarkers. Front Microbiol. 2019;10:1046. doi: https://doi.org/10.3389/fmicb.2019.01046
47. Bischoff SC, Bager P, Escher J, et al. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin Nutr. 2023;42(3):352–379. doi: https://doi.org/10.1016/j.clnu.2022.12.004
Review
For citations:
Khavkin A.I., Bogdanova N.М., Nalyotov A.V., Matsynina M.A., Erokhina M.I. Inflammatory Bowel Diseases and Dairy Products. Pediatric pharmacology. 2024;21(5):455-461. (In Russ.) https://doi.org/10.15690/pf.v21i5.2800