Possibilities of Predicting Methotrexate-associated Toxicity in Oncohematology Based on Molecular Genetic Testing Methods
https://doi.org/10.15690/pf.v21i5.2810
Abstract
The development of highly effective protocols for the treatment of acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphomas (NHL) followed the path of escalation of doses of cytostatic agents and improvement of supportive care. Methotrexate (MTX), used in high doses (1000–5000 mg/m2), radically changed the results of treatment of ALL and NHL in children, increasing patient survival rates. The downside of the anti-tumor effect of MTX is its organ toxicity, and therefore the development of methods for predicting the development of toxic effects of MTX is an important scientific and practical task. In recent years, the genetic factors of the patient’s organism have been considered as one of the reasons for the individual variability of pharmacokinetic and pharmacodynamic parameters of MTX. Abnormal function of folate cycle enzymes, methotrexate transporter proteins, due to gene polymorphism, may affect the effectiveness and toxicity of the drug. This review summarizes and analyzes the known genetic polymorphisms involved in MTX metabolism. The possibilities of predicting toxicity, as well as the prospects for individualizing therapy, taking into account the results of pharmacogenetic testing, are presented.
About the Authors
Zarui K. SimavonyanRussian Federation
Zarui K. Simavonyan, MD
Moscow
Disclosure of interest:
Not declared.
Timur T. Valiev
Russian Federation
Timur T. Valiev, MD, PhD
23, Kashirskoe Shosse, Moscow, 115478
Disclosure of interest:
Not declared.
Marina I. Savelyeva
Russian Federation
Marina I. Savelyeva, MD
Yaroslavl
Disclosure of interest:
Not declared.
Sherzod P. Abdullaev
Russian Federation
Sherzod P. Abdullaev, MD, PhD
Moscow
Disclosure of interest:
Not declared.
Svetlana R. Varfolomeeva
Russian Federation
Svetlana R. Varfolomeeva, MD, PhD
Moscow
Disclosure of interest:
Not declared.
References
1. Evans WE, Abromowitch M, Crom WR, et al. Clinical pharmacodynamic studies of high-dose methotrexate in acute lymphocytic leukemia. NCI Monogr.1987;(5):81–85.
2. Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018;18(6):689–703. doi: https://doi.org/10.1038/s41397-018-0047-z
3. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619. d oi: https://doi.org/10.1002/pbc.23074
4. Ramsey LB, Balis FM, O’Brien MM, et al. Consensus Guideline for Use of Glucarpidase in Patients with High-Dose Methotrexate Induced Acute Kidney Injury and Delayed Methotrexate Clearance. Oncologist. 2018;23(1):52–61. doi: https://doi.org/10.1634/theoncologist.2017-0243
5. Dinikina YuV, Smirnova AYu, Golubeva KM, et al. Use of high doses of the methotrexate in children suffering from some form of cancer: specificities of the accompanying therapy, assessing the toxicity. Russian Journal of Pediatric Hematology and Oncology. 2018;5(2):11–18. (In Russ). doi: https://doi.org/10.17650/2311-1267-2018-5-2-11-18
6. Pannu AK. Methotrexate overdose in clinical practice. Curr Drug Metab. 2019;20(9):714–719. doi: https://doi.org/10.2174/1389200220666190806140844
7. Tavakolpour S, Darvishi M, Ghasemiadl M. Pharmacogenetics: A strategy for personalized medicine for autoimmune diseases. Clin Genet. 2018;93(3):481–497. doi: https://doi.org/10.1111/cge.13186
8. Malova MD, Mikhailova SN, Belysheva TS. High-dosed methotrexate in pediatric oncohematology: issues of toxicity of therapy. The Bulletin of Hematology. 2023;19(3):22–27. (In Russ).
9. Meyers PA, Flombaum C. High-dose methotrexate-induced renal dysfunction: is glucarpidase necessary for rescue? J Clin Oncol. 2011;29(7):e180. doi: https://doi.org/10.1200/JCO.2010.32.8245
10. Treon SP, Chabner BA. Concepts in use of high-dose methotrexate therapy. Clin Chem. 1996;42(8 Pt 2):1322–1329.
11. Choi YJ, Park H, Lee JS, et al. Methotrexate elimination and toxicity: MTHFR 677C>T polymorphism in patients with primary CNS lymphoma treated with high-dose methotrexate. Hematol Oncol. 2017;35(4):504–509. doi: https://doi.org/10.1002/hon.2363
12. Park JA, Shin HY. Influence of genetic polymorphisms in the folate pathway on toxicity a fter high-dose methotrexate treatment in pediatric osteosarcoma. Blood Res.2016;51(1):50–57. doi: https://doi.org/10.5045/br.2016.51.1.50
13. Castaldo P, Magi S, Nasti AA, et al. Clinical pharmacogenetics of methotrexate. Curr Drug Metab. 2011;12(3):278–286. doi: https://doi.org/10.2174/138920011795101840
14. Leonov DV, Ustinov EM, Dereviannaya VO, et al. Genetic polymorphism. Value. Methods of research. Amurskii meditsinskii zhurnal. 2017;(2):62– 67. (In Russ).
15. Song Z, Hu Y, Liu S, et al. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol. 2021;12:757464. doi: https://doi.org/10.3389/fphar.2021.757464
16. Sundbaum JK, Baecklund E, Eriksson N, et al. MTHFR, TYMS and SLCO1B1 polymorphisms and adverse liver effects of methotrexate in rheumatoid arthritis. Pharmacogenomics. 2020;21(5):337–346. doi: https://doi.org/10.2217/pgs-2019-0186
17. Sramek M, Neradil J, Veselska R. Much more than you expected: The non-DHFR-mediated effects of methotrexate. Biochim Biophys Acta Gen Subj. 2017;1861(3):499–503. doi: https://doi.org/10.1016/j.bbagen.2016.12.014
18. Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat. 2006;9(4-5):227–246. doi: https://doi.org/10.1016/j.drup.2006.09.001
19. Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, et al. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(10):1383–1398. doi: https://doi.org/10.2217/pgs.14.106
20. Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69–78. doi: https://doi.org/10.2147/PGPM.S107047
21. Lambrecht L, Sleurs C, Labarque V, et al. The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics. 2017;18(8):787–795. doi: https://doi.org/10.2217/pgs-2017-0013
22. Genokarta: Genetic Encyclopedia. (In Russ). Доступно по: https://www.genokarta.ru. Ссылка активна на 31.01.2024.
23. Mahmuda NA, Yokoyama S, Huang JJ, et al. Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder. Int J Mol Sci. 2016;17(5):772. doi: https://doi.org/10.3390/ijms17050772
24. Leyva-Vázquez MA, Organista-Nava J, Gómez-Gómez Y, et al. Polymorphism G80A in the reduced folate carrier gene and its relationship to survival and risk of relapse in acute lymphoblastic leukemia. J Investig Med. 2012;60(7):1064–1067. doi: https://doi.org/10.2310/JIM.0b013e31826803c1
25. de Jonge R, Tissing WJ, Hooijberg JH, et al. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood. 2009;113(10):2284–2289. doi: https://doi.org/10.1182/blood-2008-07-165928
26. Gregers J, Christensen IJ, Dalhoff K, et al. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood. 2010;115(23):4671–4677. doi: https:// doi.org/10.1182/blood-2010-01-256958
27. Han JM, Choi KH, Lee HH, et al. Association between SLCO1B1 polymorphism and methotrexate-induced hepatotoxicity: a systematic review and meta-analysis. Anticancer Drugs. 2022;33(1):75–79. doi: https://doi.org/10.1097/CAD.0000000000001125
28. Ebid AIM, Hossam A, El Gammal MM, et al. High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination. J Chemother. 2022;34(6):381–390. doi: https://doi.org/10.1080/1120009X.2021.2009723
29. Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem. 2021;28(5):910–939. doi: https://doi.org/10.2174/0929867326666191016151018
30. Kotur N, Lazic J, Ristivojevic B, et al. Pharmacogenomic Markers of Methotrexate Response in the Consolidation Phase of Pediatric Acute Lymphoblastic Leukemia Treatment. Genes. 2020;11(4):468. doi: https://doi.org/10.3390/genes11040468
31. Erčulj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(6):1096–1104. doi: https://doi.org/10.3109/10428194.2011.639880
32. Aminkeng F, Ross CJ, Rassekh SR, et al. CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–695. doi: https://doi.org/10.1111/bcp.13008
33. Pratt VM, Cavallari LH, Fulmer ML, et al. TPMT and NUDT15 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J Mol Diagn. 2022;24(10):1051–1063. doi: https://doi.org/10.1016/j.jmoldx.2022.06.007
34. Rocha V, Porcher R, Fernandes JF, et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia. 2009;23(3):545–556. doi: https://doi.org/10.1038/leu.2008.323
35. Gagné V, St-Onge P, Beaulieu P, et al. HLA alleles associated with asparaginase hypersensitivity in childhood ALL: a report from the DFCI Consortium. Pharmacogenomics. 2020;21(8):541–547. doi: https://doi.org/10.2217/pgs-2019-0195
Review
For citations:
Simavonyan Z.K., Valiev T.T., Savelyeva M.I., Abdullaev Sh.P., Varfolomeeva S.R. Possibilities of Predicting Methotrexate-associated Toxicity in Oncohematology Based on Molecular Genetic Testing Methods. Pediatric pharmacology. 2024;21(5):449-454. (In Russ.) https://doi.org/10.15690/pf.v21i5.2810