Vitamin D and Bone Metabolism in Celiac Disease. The Possibilities of Dietary Correction
https://doi.org/10.15690/pf.v21i4.2790
Abstract
The review describes the state of the vitamin D system and bone metabolism in celiac disease, the mechanisms of the influence of vitamin D on the state of the intestinal mucosa, and risk factors that contribute to pathological changes in bones in celiac disease. Studies are presented that evaluate bone mineral density, bone metabolism, and vitamin D status in patients with celiac disease. The results of a discussion on the effect of calcium and vitamin D supplements on the course of celiac disease and the condition of bone tissue in this disease are presented.
Keywords
About the Authors
Anatoly I. KhavkinRussian Federation
Anatoly I. Khavkin, MD, PhD, Professor
62, Bolshaya Serpukhovskaya Str., Moscow, 115093
tel. +7 (499) 237-02-23
Disclosure of interest:
Not declared.
Valeriya P. Novikova
Russian Federation
Valeriya P. Novikova, MD, PhD, Professor
Saint Petersburg
Disclosure of interest:
Not declared.
Elena I. Kondratyeva
Russian Federation
Elena I. Kondratyeva, MD, PhD, Professor
Moscow
Tomsk
Disclosure of interest:
Not declared.
Elena V. Loshkova
Russian Federation
Elena V. Loshkova, MD, PhD
Moscow
Tomsk
Disclosure of interest:
Not declared.
Galina N. Yankina
Russian Federation
Galina N. Yankina, MD, PhD
Tomsk
Disclosure of interest:
Not declared.
References
1. Vernia F, Valvano M, Longo S, et al. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients. 2022;14(2):269. doi: https://doi.org/10.3390/nu14020269
2. Shumatova TA, Kovalenko DV, Prikhodchenko NG. Vitamin D and intestinal diseases. International Journal of Applied and Basic Research. 2023;(8):24–28. (In Russ).
3. Gabrusskaia TV, Kostik ММ, Nasyhova YuА, et al. Role of TaqI-Genetic Polymorphism of Vitamin D Receptor Gene in Bone Metabolism in Children with Inflammatory Bowel Disease. Pediatrician (St. Petersburg). 2017;8(3):111–119. (In Russ). doi: https://doi.org/10.17816/PED83111-115
4. Tazzyman S, Richards N, Trueman AR, et al. Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial. BMJ Open Gastroenterol. 2015;2(1):e000052. doi: https://doi.org/10.1136/ bmjgast-2015-000052
5. Battistini C, Ballan R, Herkenhoff ME, et al. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci. 2020;22(1):362. doi: https://doi.org/10.3390/ijms22010362
6. I nfantino C, Francavilla R, Vella A, et al. Role of Vitamin D in Celiac Disease and Inflammatory Bowel Diseases. Nutrients. 2022;14(23):5154. doi: https://doi.org/10.3390/nu14235154
7. Zhu W, Yan J, Zhi C, et al. 1,25(OH)2D3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model. Gut Pathog. 2019;11:8. doi: https://doi.org/10.1186/s13099-019-0291-z
8. Kühne H, Hause G, Grundmann SM, et al. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36(2):184–192. doi: https://doi.org/10.1016/j.nutres.2015.10.005
9. Schäffler H, Herlemann DP, Klinitzke P, et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn’s disease patients, but not in healthy controls. J Dig Dis. 2018;19(4):225–234. doi: https://doi.org/10.1111/1751-2980.12591
10. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258(1):25–33. doi: https://doi.org/10.1111/j.1749-6632.2012.06538.x
11. Weber G, Heilborn JD, Jimenez CIC, et al. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol. 2005;124(5):1080–1082. doi: https://doi.org/10.1111/j.0022-202X.2005.23687.x
12. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95(16):9541–9546. doi: https://doi.org/10.1073/pnas.95.16.9541
13. Gallo RL, Kim KJ, Bernfield M, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272(20):13088–13093. doi: https://doi.org/10.1074/jbc.272.20.13088
14. Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. doi: https://doi.org/10.3389/fphys.2014.00151
15. Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564–572. doi: https://doi.org/10.1681/ASN.2013040355
16. Bikle DD. Vitamin D Regulation of Immune Function. Curr Osteoporos Rep. 2022;20(3):186–193. doi: https://doi.org/10.1007/s11914-022-00732-z
17. Massironi S, Cavalcoli F, Zilli A, et al. Relevance of vitamin D deficiency in patients with chronic autoimmune atrophic gastritis: a prospective study. BMC Gastroenterol. 2018;18(1):172. doi: https://doi.org/10.1186/s12876-018-0901-0
18. Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136–160. doi: https://doi.org/10.1097/ MPG.0b013e31821a23d0
19. Corazza GR, Villanacci V, Zambelli C, et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin Gastroenterol Hepatol. 2007;5(7):838–843. doi: https://doi.org/10.1016/j.cgh.2007.03.019
20. Andersen DH. Celiac syndrome: The relationship of celiac disease, starch intolerance, and steatorrhea. J Pediatr. 1947;30(5): 564–582. doi: https://doi.org/10.1016/S0022-3476(47)80050-2
21. Nardecchia S, Auricchio R, Discepolo V, Troncone R. ExtraIntestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Front Pediatr. 2019;7:56. doi: https://doi.org/10.3389/fped.2019.00056
22. Salvensen HA, Böe J. Osteomalacia in sprue. Acta Med Scand. 1953;146(4):290–299. doi: https://doi.org/10.1111/j.0954-6820.1953.tb10243.x
23. Melvin KEW, Hepner GW, Bordier P, et al. Calcium metabolism and bone pathology in adult coeliac disease. Q J Med. 1970;39(153):83–113.
24. Vasquez H, Mazure R, Gonzalez D, et al. Risk of fractures in coeliac disease patients: a cross-sectional, case-control study. Am J Gastroenterol. 2000;95(1):183–189. doi: https://doi.org/10.1111/j.1572-0241.2000.01682.x
25. Bianchi ML, Bardella MT. Bone in celiac disease. Osteoporos Int. 2008;19(12):1705–1716. doi: https://doi.org/10.1007/s00198-008-0624-0
26. Krupa-Kozak U. Pathologic bone alterations in celiac disease: Etiology, epidemiology, and treatment. Nutrition. 2014;30(1):16–24. doi: https://doi.org/10.1016/j.nut.2013.05.027
27. Walters JRF, Banks LM, Butcher GP, Fowler CR. Detection of low bone mineral density by dual energy x ray absorptiometry in unsuspected suboptimally treated coeliac disease. Gut. 1995;37(2): 220–224. doi: https://doi.org/10.1136/gut.37.2.220
28. Corazza GR, Di Sario A, Cecchetti L, et al. Influence of pattern of clinical presentation and of gluten-free diet on bone mass and metabolism in adult coeliac disease. Bone. 1996;18(6):525–530. doi: https://doi.org/10.1016/8756-3282(96)00071-3
29. Mazure R, Vazquez H, Gonzalez D, et al. Bone mineral affection in asymptomatic adult patients with coeliac disease. Am J Gastroenterol. 1994;89(12):2130–2134.
30. Sdepanian VL, de Miranda Carvalho CN, de Morais MB, et al. Bone mineral density of the lumbar spine in children and adolescent with celiac disease on a gluten free diet in Săo Paulo, Brazil. J Pediatr Gastroenterol Nutr. 2003;37(5):571–576. doi: https://doi.org/10.1097/00005176-200311000-00013
31. Kavak U, Yuce A, Kocak N, et al. Bone mineral density in children with untreated and treated celiac disease. J Pediatr Gastroenterol Nutr. 2003;37(4):434–436. doi: https://doi.org/10.1097/00005176-200310000-00007
32. Barera G, Beccio S, Proverbio MC, Mora S. Longitudinal changes in bone metabolism and bone mineral content in children with celiac disease during consumption of a gluten-free diet. Am J Clin Nutr. 2004;79(1):148–154. doi: https://doi.org/10.1093/ajcn/79.1.148
33. Tau C, Mautalen C, De Rosa S, et al. Bone mineral density in children with celiac disease: effect of a gluten-free diet. Eur J Clin Nutr. 2006;60(3):358–363. doi: https://doi.org/10.1038/sj.ejcn.1602323
34. Khaustova GG, Banina TV, Mukhina YuG, Shcheplyagina LS. Defitsit kal’tsiya i vitamina D pri khronicheskikh zabolevaniyakh zheludka i tonkoi kishki. Doctor.Ru. 2008;(1): 14–18. (In Russ).
35. Motta MEFA, De Faria MEN, Da Silva GAP. Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment. Sao Paulo Med J. 2009;127(5):278–282. doi: https://doi.org/10.1590/s1516-31802009000500006
36. Blazina S, Bratanic N, Campa AS, et al. Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. Bone. 2010;47(3):598–603. doi: https://doi.org/10.1016/j.bone.2010.06.008
37. Margoni D, Chouliaras G, Duscas G, et al.Bone health in children with celiac disease assessed by dual x-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr. 2012;54(5):680–684. doi: https://doi.org/10.1097/MPG.0b013e31823f5fc5
38. Kondrat’eva EI, Yankina GN. Celiac disease in children. Controversial issues of diagnosis and treatment. Pediatric Nutrition. 2010;8(2):37–42. (In Russ).
39. Yankina GN, Kondrat’eva EI. Algorithm of rehabilitation of patients with celiac disease. Pediatric Nutrition. 2012;10(2):15–19. (In Russ).
40. Klimov LYa, Zakharova IN, Abramskaya LM, et al. Vitamin D and chronic intestinal diseases: role in pathogenesis and place in therapy. Practical Medicine. 2017;(5):59–64. (In Russ).
41. Volkan B, Fettah A, İşlek A, et al. Bone mineral density and vitamin K status in children with celiac disease: Is there a relation? Turk J Gastroenterol. 2018;29(2):215–220. doi: https://doi.org/10.5152/tjg.2018.17451
42. Silin AV, Satygo EA, Melnikova IYu. Bone metabolism condition impact on the development of oral cavity caries in children with celiac disease. Experimental and Clinical Gastroenterology. 2019;(1): 103–105. (In Russ). doi: https://doi.org/10.31146/1682-8658-ecg-161-1-103-105
43. Sun Y, Zhou Q, Tian D, et al. Relationship between vitamin D levels and pediatric celiac disease: a systematic review and meta-analysis. BMC Pediatr. 2024;24(1):185. doi: https://doi.org/10.1186/s12887-024-04688-0
44. Marino M, Galeazzi T, Gesuita R, et al. Differences in Plasma 25-Hydroxyvitamin D Levels at Diagnosis of Celiac Disease and Type 1 Diabetes. Nutrients. 2024;16(5):743. doi: https://doi.org/10.3390/nu16050743
45. Lewis NR, Scott BB. Should patients with ceoliac disease have their bone mineral density measured? Eur J Gastroenterol Hepatol. 2005;17(10):1065–1070. doi: https://doi.org/10.1097/00042737-200510000-00009
46. Pazianas M, Butcher GP, Subhani JM, et al. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos Int. 2006;16(1):56–63. doi: https://doi.org/10.1007/s00198-004-1641-2
47. Deressa E, Wammer AC, Falch JA, Jahnsen J. Bone metabolism in patients with newly diagnosed celiac disease. Tidsskr Nor Laegeforen. 2006;126(9):1201–1204.
48. Vilppula A, Kaukinen K, Luostarinen L, et al. Clinical benefit of gluten-free diet in screen-detected older celiac disease patients. BMC Gastroenterol. 2011;11:136–143. doi: https://doi.org/10.1186/1471-230X-11-136
49. Larussa T, Suraci E, Nazionale I, et al. No evidence of circulating autoantibodies against osteoprotegerin in patients with celiac disease. World J Gastroenterol. 2012;18(14):1622–1627. doi: https://doi.org/10.3748/wjg.v18.i14.1622
50. Dong S, Singh TP, Wei X, et al. Protective effect of 1,25-Dihydroxy vitamin D3 on pepsin-trypsin-resistant Gliadin-Induced tight Junction injuries. Dig Dis Sci. 2018;63(1):92–104. doi: https://doi.org/10.1007/s10620-017-4738-0
51. Andrén Aronsson C, Liu X, Norris JM, et al. 25(OH)D levels in infancy is Associated with Celiac Disease Autoimmunity in At-Risk children: a case-control study. Front Nutr. 2021;8:720041. doi: https://doi.org/10.3389/fnut.2021.720041
52. Verma A, Lata K, Khanna A, et al. Study of effect of glutenfree diet on vitamin D levels and bone mineral density in celiac disease patients. J Family Med Prim Care. 2022;11(2):603–607. doi: https://doi.org/10.4103/jfmpc.jfmpc_1190_21
53. O’Malley T, Heuberger R. Vitamin D status and supplementation in pediatric gastrointestinal disease. J Spec Pediatr Nurs. 2011;16(2):140–150. doi: https://doi.org/10.1111/j.1744-6155.2011.00280.x
54. Shree T, Banerjee P, Senapati S. A meta-analysis suggests the association of reduced serum level of vitamin D and T-allele of Fok1 (rs2228570) polymorphism in the vitamin D receptor gene with celiac disease. Front Nutr. 2022;9:996450. doi: https://doi.org/10.3389/fnut.2022.996450
55. Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients. 2024;16(11):1762. doi: https://doi.org/10.3390/nu16111762
56. Skoracka K, Hryhorowicz S, Tovoli F, et al. Genetic, Immunological, Dietary, Gut Microbiota, and Environmental Determinants of Osteoporosis in the Course of Celiac Disease: Which Factor Plays the First Violin in This Orchestra? Calcif Tissue Int. 2024;114(2): 98–109. doi: https://doi.org/10.1007/s00223-023-01155-3
57. Gordon CM, Bachrach LK, Carpenter TO, et al. Bone health in children and adolescents: a symposium at the annual meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003. Curr Probl Pediatr Adolesc Health Care. 2004;34(6):226–242. doi: https://doi.org/10.1016/j.cppeds.2004.03.001
58. Vestergaard P, Mosekilde L. Fracture risk in patients with celiac disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol. 2002;156(1):1–10. doi: https://doi.org/10.1093/aje/kwf007
59. Fickling WE, McFarlane XA, Bhalla AK, Robertsonet DAF. The clinical impact of metabolic bone disease in coeliac disease. Postgrad Med J. 2001;77(903):33–36. doi: https://doi.org/10.1136/ pmj.77.903.33
60. Thomason K, West J, Logan RF, et al. Fracture experience of patients with coeliac disease: a population based survey. Gut. 2003;52(4):518–522. doi: https://doi.org/10.1136/gut.52.4.518
61. West J, Logan RF, Card TR, et al. Fracture risk in people with celiac disease: a population-based cohort study. Gastroenterol. 2003;125(2):429–436. doi: https://doi.org/10.1016/s0016-5085(03)00891-6
62. Bommu VJL, Mirza L. Osteoporosis can be the sole presentation in celiac disease. Cureus. 2021;13(12):e20602. doi: https://doi.org/10.7759/cureus.20602
63. Di Stefano M, Mengoli C, Bergonzi M, Corazza GR. Bone mass and mineral metabolism alterations in adult celiac disease: pathophysiology and clinical approach. Nutrients. 2013;5(11): 4786–4799. doi: https://doi.org/10.3390/nu5114786
64. Mosca C, Thorsteinsdottir F, Abrahamsen B, et al. Newly diagnosed celiac disease and bone health in young adults: a systematic literature review. Calcif Tissue Int. 2022;110(6):641–648. doi: https://doi.org/10.1007/s00223-021-00938-w
65. Fornari MC, Pedreira S, Niveloni S, et al. Pre- and post-treatment serum levels of cytokines IL-1beta, IL-6, and IL-1 receptor antagonist in celiac disease. Are they related to the associated osteopenia? Am J Gastroenterol. 1998;93(3):413–418. doi: https://doi.org/10.1111/j.1572-0241.1998.00413.x
66. Taranta A, Fortunati D, Longo M, et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. J Bone Miner Res. 2004;19(7):1112–1121. doi: https://doi.org/10.1359/JBMR.040319
67. Epsley S, Tadros S, Farid A, et al. The effect of inflammation on bone. Front Physiol. 2021;11:511799. doi: https://doi.org/10.3389/fphys.2020.511799
68. Moreno ML, Crusius JBA, Cherñavsky A, et al. The IL-1 gene family and bone involvement in celiac disease. Immunogenetics. 2005;57(8):618–620. doi: https://doi.org/10.1007/s00251-005-0033-x
69. Fernández A, González L, de la Fuente J. Coeliac disease: clinical features in adult populations. Rev Esp Enferm Dig. 2010;102(8):466–471. doi: https://doi.org/10.4321/s1130-01082010000800002
70. Alkalay MJ. Nutrition in patients with lactose malabsorption, celiac disease, and related disorders. Nutrients. 2021;14(1):2. doi: https://doi.org/10.3390/nu14010002
71. Micic D, Rao VL, Semrad CE. Celiac disease and its role in the development of metabolic bone disease. J Clin Densitom. 2020;23(2): 190–199. doi: https://doi.org/10.1016/j.jocd.2019.06.005
72. Harrison JE, Hitchman AJW, Finlay JM, Mcneill KG. Calcium kinetic studies in patients with malabsorption syndrome. Gastroenterology. 1969;56(4):751–757. doi: https://doi.org/10.1016/S0016-5085(69)80037-5
73. Jameson S. Coeliac disease, insulin-like growth factor, bone mineral density, and zinc. Scand J Gastroenterol. 2000;35(8):894–896.
74. Cardo A, Churruca I, Lasa A, et al. Nutritional imbalances in adult celiac patients following a gluten-free diet. Nutrients. 2021;13(8):2877. doi: https://doi.org/10.3390/nu13082877
75. Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and dietary patterns related to osteoporosis. Nutrients. 2020;12(7):1986. doi: https://doi.org/10.3390/nu12071986
76. Unalp-Arida A, Ruhl CE, Choung RS, et al. Lower Prevalence of Celiac Disease and Gluten-Related Disorders in Persons Living in Southern vs Northern Latitudes of the United States. Gastroenterol. 2017;152(8):1922–1932.e2. doi: https://doi.org/10.1053/j.gastro.2017.02.012
77. Ivarsson A, Hernell O, Nyström L, Persson LA. Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health. 2003;57(1):36–39. doi: https://doi.org/10.1136/jech.57.1.36
78. Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579(21): 4851–4855. doi: https://doi.org/10.1016/j.febslet.2005.07.066
79. Lionetti E, Catassi C. New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. Int Rev Immunol. 2011;30(4):219–231. doi: https://doi.org/10.3109/08 830185.2011.602443
80. Dewar D, Pereira SP, Ciclitira PJ. The pathogenesis of coeliac disease. Int J Biochem Cell Biol. 2004;36(1):17–24. doi: https://doi.org/10.1016/S1357-2725(03)00239-5
81. Lu C, Zhou W, He X, et al. Vitamin D status and vitamin D receptor genotypes in celiac disease: A meta-analysis. Crit Rev Food Sci Nutr. 2021;61(12):2098–2106. doi: https://doi.org/10.1080/10408398.2020.1772716
82. Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: A nutrigenetic approach. Nutrients. 2012;4(4):243–257. doi: https://doi.org/10.3390/nu4040243
83. Rubio-Tapias A, Hill ID, Kelly CP, et al. ACG clinical guideline: Diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656–676; quiz 677. doi: https://doi.org/10.1038/ajg.2013.79
84. Ludvigsson JF, Bai JC, Biagi F, et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63(8):1210–1228. doi: https://doi.org/10.1136/gutjnl-2013-306578
85. Hill ID, Fasano A, Guandalini S, et al. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J Pediatr Gastroenterol Nutr. 2016;63(1):156–165. doi: https://doi.org/10.1097/MPG.0000000000001216
86. Saggese G, Vierucci F, Prodam F, et al. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr. 2018;44(1):51. doi: https://doi.org/10.1186/s13052-018-0488-7
87. Kotze LMS, Skare T, Vinholi A, et al. Impact of a glutenfree diet on bone mineral density in celiac patients. Rev Esp Enferm Dig. 2016;108(2):84–88. doi: https://doi.org/10.17235/reed.2015.3953/2015
88. Pantaleoni S, Luchino M, Adriani A, et al. Bone mineral density at diagnosis of celiac disease and after 1 year of gluten-free diet. Sci World J. 2014;2014:173082. doi: https://doi.org/10.1155/2014/173082
89. Corazza GR, Di Sario A, Cecchetti L, et al. Bone mass and metabolism in patients with celiac disease. Gastroenterology. 1995;109(1):122–128. doi: https://doi.org/10.1016/0016-5085(95)90276-7
90. Duerksen DR, Leslie WD. Positive celiac disease serology and reduced bone mineral density in adult women. Can J Gastroenterol. 2010;24(2):103–107. doi: https://doi.org/10.1155/2010/285036
91. Valdimarsson T, Löfman O, Toss G, Ström M. Reversal of osteopenia with diet in adult coeliac disease. Gut. 1996;38(3):322–327. doi: https://doi.org/10.1136/gut.38.3.322
92. Khavkin AI, Bystrova VI, Schreiner EV, et al. Celiac disease and vitamin-mineral deficiencies. Voprosy dietologii = Nutrition. 2024;14(1):54–60. (In Russ). doi: https://doi.org/10.20953/2224-5448-2024-1-54-60
93. Khavkin AI, Novikova VP, Vashura AYu, Kovtun TA. Gut-bone axis: current concepts of interactions. Voprosy prakticheskoi pediatrii = Clinical Practice in Pediatrics. 2022;17(5):66–74. (In Russ). doi: https://doi.org/10.20953/1817-7646-2022-5-66-74
94. Wang J, Wang Y, Gao W, et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 2017;5:e3450. doi: https://doi.org/10.7717/peerj.3450
95. Khavkin AI, Yablokova EA, Shapovalova NS, Erokhina MI. Gut microbiota and prospects for probiotics in paediatric celiac disease. Archives of Pediatrics and Pediatric Surgery. 2024;2(1):121–132. (In Russ). doi: https://doi.org/10.31146/2949-4664-apps-2-1-121-132
96. Al-Toma A, Herman A, Lems WF, Mulder CJJ. The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients. 2022;14(21):4554. doi: https://doi.org/10.3390/nu14214554
Review
For citations:
Khavkin A.I., Novikova V.P., Kondratyeva E.I., Loshkova E.V., Yankina G.N. Vitamin D and Bone Metabolism in Celiac Disease. The Possibilities of Dietary Correction. Pediatric pharmacology. 2024;21(4):375-384. (In Russ.) https://doi.org/10.15690/pf.v21i4.2790