Preview

Pediatric pharmacology

Advanced search

A personalized approach to application of robotic mechanotherapy methods in children with cerebral palsy of different age groups (review)

https://doi.org/10.15690/pf.v20i6.2668

Abstract

Rehabilitation of children with motor disorders is a continuous, staged and dynamic process carried out on the basis of individualization of the program, the effectiveness of which depends on many important factors, starting from the consciousness and motivation of the patient, his rehabilitation potential and ending with the methods of medical rehabilitation used. In recent years, global changes have been taking place in rehabilitation related to the introduction of robotic technology. One of the modern methods is robotic mechanotherapy, with the advantages of the wide possibilities of changing training parameters, continuous computer analysis of motor functions, the possibility of training with simulated movements close to physiological ones. The modern introduction of the possibilities and limitations of the use of robotic complexes in the rehabilitation of children with cerebral palsy will eliminate errors and complications during complex medical rehabilitation and optimally use all the advantages of this method.

About the Authors

Ulviia Sh. Ashraphova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Ulviia Sh. Ashraphova, MD

10 Fotievoy Str., build 1, Moscow, 119333


Disclosure of interest:

Not declared.



Olga S. Kupriianova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Olga S. Kupriianova, MD

Moscow


Disclosure of interest:

Not declared.



Elena K. Karmazina
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Elena K. Karmazina, MD

Moscow


Disclosure of interest:

Not declared.



Olga A. Klochkova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Olga A. Klochkova, MD, PhD

Moscow


Disclosure of interest:

Not declared.



Aiaz M. Mamedieiarov
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Aiaz M. Mamedieiarov, MD, PhD

Moscow


Disclosure of interest:

Not declared.



Elena V. Komarova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Elena V. Komarova, MD, PhD

Moscow


Disclosure of interest:

Not declared.



Marika I. Ivardava
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Marika I. Ivardava, MD, Phd

Moscow


Disclosure of interest:

Not declared.



George A. Karkashadze
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

George A. Karkashadze, MD, PhD

Moscow


Disclosure of interest:

Not declared.



References

1. Makarova MR, Lyadov KV, Kochetkov AV. The role of exercise equipment and deviced in motor rehabilitation of patients with neurological disorders. Doctor.ru. 2012;(10):54–62. (In Russ).]

2. Dovgan’ VI, Temkin IB. Mekhanoterapiya. Moscow: Meditsina; 1981. 128 p. (In Russ).]

3. Gertsik YuG, Ivanova GE, Suvorov AYu. Methods and instruments for active-passive mechanotherapy in health-saving technologies. Humanities Bulletin of BMSTU. 2013;4:1–10. (In Russ).]

4. Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985). 2006;101(6):1776–1782. doi: https://doi.org/10.1152/japplphysiol.00515.2006

5. Klochkova OA, Kurenkov AL. Botulinoterapiya pri detskom tserebral’nom paraliche: prakticheskie sovety i ul’trazvukovoi kontrol’. Moscow: MEDpressinform; 2020. 248 p. (In Russ).]

6. Zhivolupov CA, Samartsev IN. Neuroplasticity: pathophysiological patterns and perspectives of therapeutic modulation. S.S. Korsakov Journal of Neurology and Psychiatry. 2009;109(4):78–85. (In Russ).]

7. Johansson BB. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke. 2000;31(1):223–230. doi: https://doi.org/10.1161/01.str.31.1.223

8. Liepert J, Graef S, Uhde I, et al. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand. 2000;101(5):321–326. doi: https://doi.org/10.1034/j.1600-0404.2000.90337a.x

9. Reid LB, Rose SE, Boyd RN. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat Rev Neurol. 2015;11(7):390–400. doi: https://doi.org/10.1038/nrneurol.2015.97

10. Mundkur N. Neuroplasticity in children. Indian J Pediatr. 2005;72(10):855–857. doi: https://doi.org/10.1007/BF02731115

11. Christine C, Dolk H, Platt MJ, et al. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl. 2007;109:35–38. doi: https://doi.org/10.1111/j.1469-8749.2007.tb12626.x

12. Register ACPR. Report of the Australian Cerebral Palsy Register: birth years 1995–2012. November 2018. Available online: https://cpregister.com/wp-content/uploads/2019/02/Report-of-theAustralian-Cerebral-Palsy-Register-Birth-Years-1995-2012.pdf. Accessed on December 11, 2023.

13. Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: https://doi.org/10.1007/s11910-020-1022-z

14. Hägglund G, Wagner P. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150. doi: https://doi.org/10.1186/1471-2474-9-150

15. Wissel J, Ward AB, Erztgaard P, et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med. 2009;41(1):13–25. doi: https://doi.org/10.2340/16501977-0303

16. Klochkova OA, Kurenkov AL. Muscular weakness and loss of motor skills in patients with cerebral palsy. Voprosy sovremennoi pediatrii — Current Pediatrics. 2020;19(2):107–115. (In Russ). doi: https://doi.org/10.15690/vsp.v19i2.2103]

17. Einspieler C, Marschik PB. Early markers for cerebral palsy. In: Cerebral palsy: a multidisciplinary approach. Panteliadis CP, ed. Cham: Springer Cham; 2018. doi: https://doi.org/10.1007/978-3-319-67858-0_9

18. Mockford M, Caulton JM. The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther. 2010;22(2):222–233. doi: https://doi.org/10.1097/PEP.0b013e3181dbaf96

19. Baindurashvili AG, Kenis VM, Ivanov SV, Ikoeva GA. Reabilitatsiya detei s neiroortopedicheskoi patologiei na etapakh khirurgicheskogo lecheniya s primeneniem robotizirovannoi mekhanoterapii. Bulletin of Rehabilitation Medicine. 2012;(2):57–60. (In Russ).]

20. Tedroff K, Löwing K, Jacobson DN, Åström E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729. doi: https://doi.org/10.1111/j.1469-8749.2011.03969.x

21. Tedroff K, Löwing K, Åström E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57(5):484–490. doi: https://doi.org/10.1111/dmcn.12665

22. Klochkova OA, Kolesnikova EP, Zinenko DYu, Berdichevskaya EM. Selective Dorsal Rhizotomy in Treatment of Spasticity in Patients with Cerebral Palsy. Voprosy sovremennoi pediatrii — Current Pediatrics. 2022;21(1):19–28. (In Russ). doi: https://doi.org/10.15690/vsp.v21i1.2382]

23. Reynard F, Gerber F, Favre C, Al-Khodairy A. Movement analysis with a new robotic device — The MotionMaker™: A case report. Gait & Posture. 2009;30(2):S149–S150. doi: https://doi.org/10.1016/j.gaitpost.2009.08.224

24. De Mauro A. Carrasco E, Oyarzun D, et al. Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project. In: Advances in Robotics and Virtual Reality. Gulrez T, Hassanien AE, eds. Intelligent Systems Reference Library. Vol. 26. Heidelberg: Springer Berlin; 2012. pp. 89–108. doi: https://doi.org/10.1007/978-3-642-23363-0_4

25. Bouri M, Clavel R. Risk analysis of a rehabilitation medical robot. IMT-2011. Lausanne; 2011. p. 348

26. Lobzin YuV, Ivanova MV, Skripchenko NV, et al. Experience of using robotic mechanotherapy in rehabilitation of children with motor disorders of various genesis // Medicine of Extreme Situations. 2015;1:22–26. (In Russ).]

27. Lisovskyy YeV, Kussainova KK. The method of dynamic proprioceptive correction in the rehabilitation of patients with children’s cerebral palsy. Journal of Clinical Medicine of Kazakhstan. 2016;(2):31–35. (In Russ).]

28. Molchanova TV, Kokhan ST. Analysis of the experience of application of a method of dynamic propriotseptivny correction in the center of medico-social rehabilitation of disabled people “Rostock” of Zabaykalsky Krai. Sostoyanie zdorov’ya: meditsinskie, psikhologo-pedagogicheskie i sotsial’nye aspekty: Materials of the IX International Scientific and Practical Internet Conference, Chita, April 23–29, 2018. Chita: Transbaikal State University; 2018. рр. 113–117. (in Russ).]

29. Kir’yanova VV, Gerasimenko MY, Shorokhova MN, Gorbacheva KV. Vibrotherapy in medical practice. Russian Journal of Physiotherapy, Balneology and Rehabilitation. 2020;19(3):171–177. (In Russ). doi: https://doi.org/10.17816/1681-3456-2020-19-3-5]

30. Kotov SV, Lijdvoy VYu, Sekirin AB, et al. The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(10-2):41–47. (In Russ). doi: https://doi.org/10.17116/jnevro201711710241-47]

31. Yoo JW, Lee DR, Cha YJ, You SH. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy. NeuroRehabilitation. 2017;40(2):175–185. doi: https://doi.org/10.3233/NRE-161402

32. Larina NV, Pavlenko VB, Korsunskaya LL, et al. Rehabilitation possibilities for children with cerebral palsy through the use of robotic devices and biofeedback. Bulletin of Siberian Medicine. 2020;19(3):156–165. (In Russ). doi: https://doi.org/10.20538/1682-0363-2020-3-156-165]

33. Frolov AA, Bobrov PD. Brain-computer interface: neurophysiological background, clinical application. Zhurnal vysshei nervnoi deyatelnosti imeni I.P. Pavlova. 2017;67(4):365–376. (In Russ). doi: https://doi.org/10.7868/S0044467717040013]

34. Kim TW, Lee BH. Clinical usefulness of brain-computer interfacecontrolled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J Phys Ther Sci. 2016;28(9):2491–2494. doi: https://doi.org/10.1589/jpts.28.2491

35. Frolov AA, Mokienko OA, Lyukmanov RKh, et al. Preliminary results of a controlled study of BCI-exoskeleton technology efficacy in patients with poststroke arm paresis. Bulletin of RSMU. 2016;(2):17–25. (In Russ).]

36. Ang KK, Chua KS, Phua KS, et al. Randomized Controlled Trial of EEG-Based Motor Imagery Brain – Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci. 2015;46(4):310–320. doi: https://doi.org/10.1177/1550059414522229

37. Ramos-Murguialday A, Broetz D, Rea M, et al. Brain – machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100–108. doi: https://doi.org/10.1002/ana.23879

38. Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2016;19(1):64–71. doi: https://doi.org/10.3109/17518423.2014.899648

39. Fasoli SE, Fragala-Pinkham M, Hughes R, et al. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008;87(11):929–936. doi: https://doi.org/10.1097/PHM.0b013e31818a6aa4

40. Frascarelli F, Masia L, Di Rosa G, et al. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. Eur J Phys Rehabil Med. 2009;45(1):135–1341.

41. Krebs HI, Fasoli SE, Dipietro L, et al. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012;26(7):855–860. doi: https://doi.org/10.1177/1545968311433427

42. Qiu Q, Ramirez DA, Saleh S, et al. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: A feasibility study. J Neuroeng Rehabil. 2009;6:40. doi: https://doi.org/10.1186/1743-0003-6-40

43. Mosina MO, Tikhonov SV, Selivanova EA, et al. Robotic technologies in the complex rehabilitation of children with movement disorders. Detskaya i podrostkovaya reabilitatsiya. 2021;(2):66–69. (In Russ).]

44. Kovina MV, Pismennaya EV, Petrushanskaya KA, Batysheva TT. Сomplex abilitation of children of the early age with hemiparetic form of infantile cerebral palsy with application of the exoskeleton ExoAtlet Bambini-Mini. Detskaya i podrostkovaya reabilitatsiya. 2022;(3):5–12. (In Russ).]

45. Федоров А.В. Краткая история создания экзоскелетов // Наука, техника и образование. — 2017. — № 3. — С. 71–73. [Fedorov AV. Brief history of exoskeletons. Science, Technology and Education. 2017;(3):71–73. (In Russ).]

46. Belova AN, Borzikov VV, Kuznetsov AN, Rukina NN. Robotic Devices in Neurorehabilitation: Review. Bulletin of Rehabilitation Medicine. 2018;(2):94–107. (In Russ).]

47. Delgado E, Cumplido C, Ramos J, et al. ATLAS2030 Pediatric Gait Exoskeleton: Changes on Range of Motion, Strength and Spasticity in Children With Cerebral Palsy. A Case Series Study. Front Pediatr. 2021;9:753226. doi: https://doi.org/10.3389/fped.2021.753226

48. Cumplido-Trasmonte C, Ramos-Rojas J, Delgado-Castillejo E, et al. Effects of ATLAS 2030 gait exoskeleton on strength and range of motion in children with spinal muscular atrophy II: a case series. J Neuroeng Rehabil. 2022;19(1):75. doi: https://doi.org/10.1186/s12984-022-01055-x

49. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: https://doi.org/10.1111/j.1469-8749.1997.tb07414.x

50. Prikhod’ko OG, Yugova OV. Sistema rannei pomoshchi detyam s ogranichennymi vozmozhnostyami zdorov’ya i ikh roditelyam. ANO “Sovet po voprosam upravleniya i razvitiya”. Moscow: OOO “Delovye i yuridicheskie uslugi ‘LeksPraksis’”; 2015. 144 p. (In Russ).]

51. Butko GA, Katelson TA, Oltu SP. Development of an early comprehensive care system for children with disabilities in educational and healthcare institutions. Vestnik of Minin University. 2019;7(4):1–18. (In Russ).]

52. Kochubei GN, Ustinova AV, Men’shikova TN. Opyt primeneniya kompleksa Lokomat u detei s DTsP. Vestnik fizioterapii i kurortologii. 2015;21(2):134. (In Russ).]

53. Merkusheva EP. Razvitie dvigatel’noi sfery — vazhnoe uslovie effektivnoi korrektsii detei s ogranichennymi vozmozhnostyami zdorov’ya. Obrazovanie i vospitanie. 2018;(5):54–60. (In Russ).]

54. Graham D, Aquilina K, Mankad K, Wimalasundera N. Selective dorsal rhizotomy: current state of practice and the role of imaging. Quant Imaging Med Surg. 2018;8(2):209–218. doi: https://doi.org/10.21037/qims.2018.01.08


Review

For citations:


Ashraphova U.Sh., Kupriianova O.S., Karmazina E.K., Klochkova O.A., Mamedieiarov A.M., Komarova E.V., Ivardava M.I., Karkashadze G.A. A personalized approach to application of robotic mechanotherapy methods in children with cerebral palsy of different age groups (review). Pediatric pharmacology. 2023;20(6):588–596. (In Russ.) https://doi.org/10.15690/pf.v20i6.2668

Views: 335


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)