Preview

Pediatric pharmacology

Advanced search

Immunodeficiency Disorders in Congenital Heart Diseases (Review)

https://doi.org/10.15690/pf.v20i5.2647

Abstract

The study data of the last two decades on primary and secondary immunodeficiency in congenital heart defects (CHD) as a cause of frequent infectious complications before and after cardiac surgery are presented. Based on screenings of various levels, data are provided on the greater severity of immunological disorders in critical and cyanotic CHD in conotruncal defects compared with those in septal defects and stenotic defects. Violations were more often related to T-cell function and immunoglobulin deficiency (especially the IgG and IgG4 subgroups). Various types of primary immunodeficiency were found in 13 genetic syndromes in combination with CHD. The review discusses the possibility of using the technique of quantitative determination of DNA TREC and KREC — by-products of maturation of T- and B-cell receptors, which allows us to judge the defects of the T- and B-cell links of the immune system to predict infectious complications in children with CHD. The data of our own study of 200 infants with CHD (in 5% of cases with syndromic forms of CHD) are presented, where a decrease in TREC was found in 23.5% of cases, including all infants with syndromic forms, more often with cyanotic and conotruncal CHD and in children admitted in critical conditions. In children with reduced TREC values, infectious complications in the postoperative period were observed significantly more often than in children with normal indicators (36 and 3.6%, respectively). The analysis of publications confirmed the importance of TREC and KREC screening for targeted preoperative preparation in order to reduce postoperative complications and reduce the risk of mortality in CHD.

About the Authors

Elena A. Degtyareva
Peoples’ Friendship University of Russia
Russian Federation

Elena A. Degtyareva, MD, PhD, Professor

21, bld. 3, Miklukho-Maklaya Str., Moscow, 117198

tel.: +7 (903) 545-77-02


Disclosure of interest:

Not declared



Bupe M. Mwela
Peoples’ Friendship University of Russia
Russian Federation

Bupe M. Mwela

Moscow


Disclosure of interest:

Not declared



Andrey P. Prodeus
Research clinical institute of childhood
Russian Federation

Andrey P. Prodeus, MD, PhD, Professor

Moscow Region, Mytishchi


Disclosure of interest:

Not declared



Dmitry Yu. Ovsyannikov
Peoples’ Friendship University of Russia
Russian Federation

Dmitry Yu. Ovsyannikov, MD, PhD

Moscow


Disclosure of interest:

Not declared



Marina G. Kantemirova
Peoples’ Friendship University of Russia
Russian Federation

Marina G. Kantemirova, MD, PhD

Moscow


Disclosure of interest:

Not declared



Olga V. Alekseeva
Peoples’ Friendship University of Russia
Russian Federation

Olga V. Alekseeva, MD, PhD, Associate Professor

Moscow


Disclosure of interest:

Not declared



Dmitry A. Kudlay
I.M. Sechenov Moscow Medical Academy; National Research Center – Institute of Immunology
Russian Federation

Dmitry A. Kudlay, MD, PhD, corresponding member of the RAS

Moscow


Disclosure of interest:

Not declared



Alexey I. Kim
A.N. Bakulev Scientific Center for Cardiovascular Surgery
Russian Federation

Alexey I. Kim, MD, PhD, Professor

Moscow


Disclosure of interest:

Not declared



Inessa E. Nefedova
A.N. Bakulev Scientific Center for Cardiovascular Surgery
Russian Federation

Inessa E. Nefedova, MD, PhD

Moscow


Disclosure of interest:

Not declared



Tatiana V. Rogova
A.N. Bakulev Scientific Center for Cardiovascular Surgery
Russian Federation

Tatiana V. Rogova, MD, PhD

Moscow


Disclosure of interest:

Not declared



Margarita R. Tumanyan
A.N. Bakulev Scientific Center for Cardiovascular Surgery
Russian Federation

Margarita R. Tumanyan, MD, PhD, Professor

Moscow


Disclosure of interest:

Not declared



Ilya A. Korsunskiy
Emek Medical Center
Israel

Ilya A. Korsunskiy, MD, PhD

Afula


Disclosure of interest:

Not declared



References

1. Van Praagh R. Diagnosis of complex congenital heart disease: morphologic-anatomic method and terminology. Cardiovasc Intervent Radiol. 1984;7(3-4):115–120. doi: https://doi.org/10.1007/BF02552810

2. Bokeriya L, Shatalov K. Detskaya kardiokhirurgiya: A guide for doctors. Moscow: Scientific Center for Cardiovascular Surgery n.a. A.N. Bakulev; 2016. 864 p. (In Russ).

3. Hoffman JI, Kaplan S. The incidence of congenital heart disease. Am Coll Cardiol. 2002;39(12):1890–1900. doi: https://doi.org/10.1016/s0735-1097(02)01886-7.

4. Kemper AR, Mahle WT, Martin GR, et al. Strategies for implementing screening for critical congenital heart disease. Pediatrics. 2011;128(5): e1259–e1267. doi: https://doi.org/10.1542/peds.2011-1317

5. Hoffman JI. The global burden of congenital heart disease. Cardiovasc J Afr. 2013;24(4):141–145. doi: https://doi.org/10.5830/CVJA-2013-028

6. Bravo-Valenzuela NJ, Peixoto AB, Júnior EA. Prenatal diagnosis of congenital heart disease: a review of current knowledge. Indian Heart J. 2018;70(1):150–164. doi: https://doi.org/10.1016/j.ihj.2017.12.005

7. Helman SM, Herrup EA, Christopher AB, Al-Zaiti SS. The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review. Cardiol Young. 2021;31(11):1770– 1780. doi: https://doi.org/10.1017/S1047951121004212

8. Ferencz C, Neill CA, Boughman JA, et al. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr. 1989;114(1):79–86. doi: https://doi.org/10.1016/s0022-3476(89)80605-5

9. Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet. 2007;145C(2):158–171. doi: https://doi.org/10.1002/ajmg.c.30126

10. Nwafor IA, Eze JC. Status of congenital heart defects in Nigeria: The role of cardiac surgery. World J Cardiovasc Surg. 2019;9(7):63– 72. doi: https://doi.org/10.4236/wjcs.2019.97008

11. Arvind B, Saxena A. Timing of Interventions in infants and children with congenital heart defects. Indian J Pediatr. 2020;87(4):289–294. doi: https://doi.org/10.1007/s12098-019-03133-w

12. Shmukler A, Haramati A, Haramati LB. Overview of Common Surgical Procedures in CHD. Semin Roentgenol. 2020;55(3):264– 278. doi: https://doi.org/10.1053/j.ro.2020.06.010

13. Corno AF, Koerner TS, Salazar JD. Innovative treatments for congenital heart defects. World J Pediatr. 2023;19(1):1–6. doi: https://doi.org/10.1007/s12519-022-00654-x

14. Mavroudis C, Backer C, Anderson R, et al. Pediatric cardiac surgery. John Wiley & Sons; 2023.

15. Costello JM, Pasquali SK, Jacobs JP, et al. Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Circulation. 2014;129(24):2511–2517. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.005864

16. Zelenikin MA, Degtyareva EA, Lobacheva GV, Khakhina LL. Znachenie dooperatsionnoi profilaktiki spetsificheskikh pnevmonii u infitsirovannykh kardiokhirurgicheskikh bol’nykh rannego vozrasta. Russian Journal of Thoracic and Cardiovascular Surgery. 1997;(5):27–30. (In Russ).

17. Healy F, Hanna B, Zinman R. Pulmonary complications of congenital heart disease. Paediatr Respir Rev. 2012;13(1):10–15. doi: https://doi.org/10.1016/j.prrv.2011.01.007

18. Murni IK, MacLaren G, Morrow D, et al. Perioperative infections in congenital heart disease. Cardiol Young. 2017;27(S6):S14–S21. doi: https://doi.org/10.1017/S1047951117002578

19. Woodward CS. Keeping children with congenital heart disease healthy. J Pediatr Health Care. 2011;25(6):373–378. doi: https://doi.org/10.1016/j.pedhc.2011.03.007

20. Navas L, Wang E, de Carvalho V, Robinson J. Improved outcome of respiratory syncytial virus infection in a high-risk hospitalized population of Canadian children. Pediatric Investigators Collaborative Network on Infections in Canada. J Pediatr. 1992;121(3):348–354. doi: https://doi.org/10.1016/s0022-3476(05)90000-0

21. Kristensen K, Stensballe LG, Bjerre J, et al. Risk factors for respiratory syncytial virus hospitalisation in children with heart disease. Arch Dis Child. 2009;94(10):785–789. doi: https://doi.org/10.1136/adc.2008.143057

22. Degtyareva EA, Pavlova ES, Ovsyannikov DYu. Features of pneumonia in infants with congenital heart disease. Natural and technical sciences. 2011;(5):194–195. (In Russ).

23. Degtyareva EA, Pavlova ES, Ovsyannikov DYu, Vavilova GN. Pnevmoniya u mladentsev s vrozhdennymi porokami serdtsa. Pediatria. Journal n.a. G.N. Speransky. 2011;90(6):164. (In Russ).

24. Habib G, Hoen B, Tornos P, et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J. 2009;30(19):2369–2413. doi: https://doi.org/10.1093/eurheartj/ehp285

25. Babu S, Sreedhar R, Munaf M, Gadhinglajkar SV. Sepsis in Pediatric Cardiac Intensive Care Unit: an updated review. J Cardiothorac Vasc Anesth. 2023;37(6):1000–1012. doi: https://doi.org/10.1053/j.jvca.2023.02.011

26. Radford DJ, Thong YH. The association between immunodeficiency and congenital heart disease. Pediatr Cardiol. 1988;9(2):103– 108. doi: https://doi.org/10.1007/BF02083708

27. Radford D, Thong Y, Beard L, Ferrante A. IgG subclass deficiency in children with congenital heart disease. Pediatr Allergy Immunol. 1990;1(1):41–45.

28. Degtyareva E, Samuilova DS, Razuvaev M, Khurges I. Immunological screening and immune correction in cardiosurgery of infants. Bull Exp Biol Med. 1993;115:417–421.

29. Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343(1):37–49. doi: https://doi.org/10.1056/NEJM200007063430107

30. Petrov RV, Khaitov RM, Chereshnev VA. Fiziologiya immunnoi sistemy: kletochnye i molekulyarno- biologicheskie mekhanizmy. Russian Foundation for Basic Research Journal. 2017;(S1):96–119. (In Russ).

31. Farmer JR, Mahajan VS. Molecular diagnosis of inherited immune disorders. Clin Lab Med. 2019;39(4):685–697. doi: https://doi.org/10.1016/j.cll.2019.07.013

32. Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64. doi: https://doi.org/10.1007/s10875-019-00737-x

33. De Vries E. Patient-centred screening for primary immunodeficiency: a multi-stage diagnostic protocol designed for non-immunologists. Clin Exp Immunol. 2006;145(2):204–214. doi: https://doi.org/10.1111/j.1365-2249.2006.03138.x

34. Korsunskiy IA, Gordukova MA, Munblit DB, et al. Clinical and epidemiological aspects of primary immunodeficiency diseases (PID) and early diagnosis options. Medical Immunology (Russia). 2017;19(5):505–512. (In Russ). doi: https://doi.org/10.15789/1563-0625-2017-5-505-512

35. Mukhina AA, Kuzmenko NB, Rodina YA, et al. Primary immunodeficiencies in Russia: data from the National Registry. Front Immunol. 2020;11:1491. doi: https://doi.org/10.3389/fimmu.2020.01491

36. Cheremokhin DA. Fenotipicheskie i molekulyarnogeneticheskie aspekty pervichnykh immunodefitsitov u detei s vrozhdennymi porokami serdtsa. [dissertation]. Yekaterinburg; 2022. 149 p. (In Russ).

37. Diller GP, Lammers AE, Fischer A, et al. Immunodeficiency is prevalent in congenital heart disease and associated with increased risk of emergency admissions and death. Eur Heart J. 2023;44(34):3250–3260. doi: https://doi.org/10.1093/eurheartj/ehad029

38. Freedom RM, Rosen FS, Nadas AS. Congenital cardiovascular disease and anomalies of the third and fourth pharyngeal pouch. Circulation. 1972;46(1):165–172. doi: https://doi.org/10.1161/01.cir.46.1.165

39. Levin S, Schlesinger M, Handzel Z, et al. Thymic deficiency in Down’s syndrome. Pediatrics. 1979;63(1):80–87.

40. Moerman P, Goddeeris P, Lauwerijns J, Van der Hauwaert L. Cardiovascular malformations in DiGeorge syndrome (congenital absence of hypoplasia of the thymus). Heart. 1980;44(4):452–459. doi: https://doi.org/10.1136/hrt.44.4.452

41. Digilio MC, Marino B, Toscano A, et al. Congenital heart defects in Kabuki syndrome. Am J Med Genet. 2001;100(4):269–274. doi: https://doi.org/10.1002/ajmg.1265

42. Wienecke LM, Cohen S, Bauersachs J, et al. Immunity and inflammation: the neglected key players in congenital heart disease? Heart Fail Rev. 2022;27(5):1957–1971. doi: https://doi.org/10.1007/s10741-021-10187-6

43. Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells. 2022;11(21):3353. doi: https://doi.org/10.3390/cells11213353

44. Hammarström L, Smith CE. Genetic approach to common variable immunodeficiency and IgA deficiency. In: Primary Immunodeficiency Diseases A molecular and genetic approach. Ochs HD, Smith CIE, Puck JM, eds. 3rd ed. Oxford University Press; 2007. pp. 250–262. doi: https://doi.org/10.1093/med/9780195389838.003.0028

45. Bonilla FA, Barlan I, Chapel H, et al. International Consensus Document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(1):38–59. doi: https://doi.org/10.1093/10.1016/j.jaip.2015.07.025

46. Sun J, Yang L, Lu Y, et al. Screening for primary immunodeficiency diseases by next-generation sequencing in early life. Clin Transl Immunology. 2020;9(5):e1138. doi: https://doi.org/10.1002/cti2.1138

47. Jian M, Wang X, Sui Y, et al. Newborn Screening in Unselected Children Using Genomic Sequencing. In: Research Square. 2021. doi: https://doi.org/10.21203/rs.3.rs-143405/v1

48. Rodriguez JA, Bang TJ, Restrepo CS, et al. Imaging features of primary immunodeficiency disorders. Radiol Cardiothorac Imaging. 2021;3(2):e200418. doi: https://doi.org/10.1148/ryct.2021200418

49. Degtyareva EA. Znachenie nekhirurgicheskikh faktorov v uluchshenii rezul’tatov khirurgicheskogo lecheniya vrozhdennykh porokov serdtsa. [abstract of dissertation]. Moscow; 1996. 45 p. (In Russ).

50. Cocks BG, Chang C-CJ, Carballido JM, et al. A novel receptor involved in T-cell activation. Nature. 1995;376(6537):260–263. doi: https://doi.org/10.1038/376260a0

51. Van der Spek J, Groenwold RH, van der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J Clin Immunol. 2015;35(4):416– 430. doi: https://doi.org/10.1007/s10875-015-0152-6

52. Korsunskiy I, Blyuss O, Gordukova M, et al. TREC and KREC levels as a predictors of lymphocyte subpopulations measured by flow cytometry. Front Physiol. 2019;9:1877. doi: https://doi.org/10.3389/fphys.2018.01877

53. Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn screening through TREC, TREC/KREC system for primary immunodeficiency with limitation of TREC/KREC. Comprehensive review. Antiinflamm Antiallergy Agents Med Chem. 2021;20(2):132–149. doi: https://doi.org/10.2174/1871523019999200730171600

54. Kwok JS, Cheung SK, Ho JC, et al. Establishing simultaneous T cell receptor excision circles (TREC) and K-deleting recombination excision circles (KREC) quantification assays and laboratory reference intervals in healthy individuals of different age groups in Hong Kong. Front Immunol. 2020;11:1411. doi: https://doi.org/10.3389/fimmu.2020.01411

55. Medova V, Hulinkova I, Laiferova N, et al. The importance of defining the age-specific TREC/KREC levels for detection of various inborn errors of immunity in pediatric and adult patients. Clin Immunol. 2022;245:109155. doi: https://doi.org/10.1016/j.clim.2022.109155

56. Marcovecchio GE, Bortolomai I, Ferrua F, et al. Thymic epithelium abnormalities in DiGeorge and Down syndrome patients contribute to dysregulation in T cell development. Front Immunol. 2019;10:447. doi: https://doi.org/10.3389/fimmu.2019.00447

57. Chinen J, Shearer WT. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S195– S203. doi: https://doi.org/10.1016/j.jaci.2009.08.040

58. Van Zelm MC, Van Der Burg M, Langerak AW, Van Dongen JJ. PID comes full circle: applications of V (D) J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immunol. 2011;2:12. doi: https://doi.org/10.3389/fimmu.2011.00012

59. Marinova M, Georgyeva A, Yordanova V, et al. Implementation of TREC/KREC detection protocol for newborn SCID screening in Bulgaria: a pilot study. Cent Eur J Immunol. 2022;47(4):339–349. doi: https://doi.org/10.5114/ceji.2022.124396

60. Martínez-Morillo E, Prieto García B, Álvarez Menéndez FV. Challenges for worldwide harmonization of newborn screening programs. Clin Chem. 2016;62(5):689–698. doi: https://doi.org/10.1373/clinchem.2015.240903

61. Jiang T, Li Z, Zhang Q. Advances in neonatal screening for primary immune deficiencies. Exp Ther Med. 2016;11(5):1542–1544. doi: https://doi.org/10.3892/etm.2016.3119

62. Barbaro M, Ohlsson A, Borte S, et al. Newborn screening for severe primary immunodeficiency diseases in Sweden — a 2-year pilot TREC and KREC screening study. J Clin Immunol. 2017;37(1):51–60. doi: https://doi.org/10.1007/s10875-016-0347-5

63. King J, Ludvigsson JF, Hammarström L. Newborn screening for primary immunodeficiency diseases: the past, the present and the future. Int J Neonatal Screen. 2017;3(3):19. doi: https://doi.org/10.3390/ijns3030019

64. Loeber JG, Platis D, Zetterström RH, et al. Neonatal screening in Europe revisited: an ISNS perspective on the current state and developments since 2010. Int J Neonatal Screen. 2021;7(1):15. doi: https://doi.org/10.3390/ijns7010015

65. Blom M, Bredius RG, Jansen ME, et al. Parents’ perspectives and societal acceptance of implementation of newborn screening for SCID in the Netherlands. J Clin Immunol. 2021;41(1):99–108. doi: https://doi.org/10.1007/s10875-020-00886-4.

66. Kennedy K, Rychik J, Heimall J, Dodds K. TREC screening in pediatric patients with congenital heart disease. J Allergy Clin Immunol. 2020;145(2):AB213. doi: https://doi.org/10.1016/j. jaci.2019.12.243

67. Degtyareva EA, Prodeus AP, Mwela BM, et al. Novye metody doopertsionnoi diagnostiki immunologicheskoi nedostatochnosti u detei s vrozhdennymi porokami serdtsa dlya prognozirovaniya i profilaktiki infektsionnykh oslozhnenii kardiokhirurgii. In: Vtoroi Vserossiiskii s’ezd detskikh kardiokhirurgov i spetsialistov po vrozhdennym porokam serdtsa, 07–09 sentyabrya 2023, g. Volgograd: Abstract book. Moscow: Publishing House of the Russian Academy of Medical Sciences; 2023. pp. 84–86. (In Russ).

68. Gul KA, Øverland T, Osnes L, et al. Neonatal levels of T-cell receptor excision circles (TREC) in patients with 22q11. 2 deletion syndrome and later disease features. J Clin Immunol. 2015;35(4):408–415. doi: https://doi.org/10.1007/s10875-015-0153-5

69. Singampalli KL, Jui E, Shani K, et al. Congenital heart disease: an immunological perspective. Front Cardiovasc Med. 2021;8:701375. doi: https://doi.org/10.3389/fcvm.2021.701375

70. Dar N, Gothelf D, Korn D, et al. Thymic and bone marrow output in individuals with 22q11.2 deletion syndrome. Pediatr Res. 2015;77(4):579–585. doi: https://doi.org/10.1038/pr.2015.14


Review

For citations:


Degtyareva E.A., Mwela B.M., Prodeus A.P., Ovsyannikov D.Yu., Kantemirova M.G., Alekseeva O.V., Kudlay D.A., Kim A.I., Nefedova I.E., Rogova T.V., Tumanyan M.R., Korsunskiy I.A. Immunodeficiency Disorders in Congenital Heart Diseases (Review). Pediatric pharmacology. 2023;20(5):507-514. (In Russ.) https://doi.org/10.15690/pf.v20i5.2647

Views: 549


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)