Preview

Педиатрическая фармакология

Расширенный поиск

Латентный дефицит железа у детей раннего возраста: современные профилактические стратегии

https://doi.org/10.15690/pf.v20i5.2634

Аннотация

В статье представлены важные для педиатров практические сведения о состоянии обеспеченности организма ребенка раннего возраста эссенциальным микроэлементом — железом, а также о причинах развития и стадийности железодефицитных состояний у детей. Охарактеризованы клинические и лабораторные критерии идентификации этих состояний, изложены данные об их распространенности у детей первых лет жизни. Представлены результаты современных исследований, показавших связи железодефицитных состояний с отсроченными нарушениями развития детей, в том числе когнитивного. Подробно описаны алиментарные факторы, ассоциированные с обеспечением организма железом, и диетологические стратегии, включая связанные со своевременным введением, полноценностью и разнообразием прикорма, которые направлены на эффективную и безопасную профилактику латентных железодефицитов.

Об авторах

И. А. Беляева
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; Морозовская детская городская клиническая больница ДЗМ
Россия

Беляева Ирина Анатольевна, доктор медицинских наук, профессор Российской академии наук, заведующая отделом преконцепционной, антенатальной и неонатальной медицины НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. Б.В. Петровского» Минобрнауки России, профессор кафедры факультетской педиатрии педиатрического факультета ФГАОУ РНИМУ им. Н.И. Пирогова Минздрава России, врач-неонатолог ГБУЗ МДКБ ДЗМ

119333, Москва, ул. Фотиевой, д. 10, к. 1

тел.: +7 (905) 728-58-02


Раскрытие интересов:

Чтение лекций для компаний АО «ПРОГРЕСС», «Акрихин», Bayer, «АстраЗенека»



Е. П. Бомбардирова
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»
Россия

Бомбардирова Елена Петровна, д.м.н., профессор

Москва


Раскрытие интересов:

Чтение лекций для компаний АО «ПРОГРЕСС», «Акрихин»



Т. В. Турти
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; НИИ организации здравоохранения и медицинского менеджмента
Россия

Турти Татьяна Владимировна, д.м.н., профессор

Москва


Раскрытие интересов:

Е.П. Бомбардирова подтвердила отсутствие конфликта интересов, о котором необходимо сообщить



Список литературы

1. Намазова-Баранова Л.С., Макарова С.Г., Студеникин В.М. Витамины и минеральные вещества в практике педиатра / ФГАУ «Научный центр здоровья детей» Минздрава России; Союз педиатров России. — М.: ПедиатрЪ; 2016. — 299 с.

2. Национальная программа по оптимизации обеспеченности витаминами и минеральными веществами детей России (и использованию витаминных и витаминно-минеральных комплексов и обогащенных продуктов в педиатрической практике) / Союз педиатров России. — М.: ПедиатрЪ; 2017. — 152 с.

3. Маркова И.В., Калиничева В.И. Педиатрическая фармакология: руководство для врачей. — 2-е изд., перераб. и доп. — Л.: Медицина; 1987. — 495 с.

4. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301–323. doi: https://doi.org/10.1159/000107673

5. Domellöf M, Braegger C, Campoy C, et al. Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr. 2014;58(1):119–129. doi: https://doi.org/10.1097/MPG.0000000000000206

6. Ладодо К.С., Дружинина Л.В. Детское питание: от рождения до года. — М.: Лабиринт пресс; 2007. — 237 с.

7. Диагностика и лечение железодефицитной анемии у детей и подростков: пособие для врачей / под ред. А.Г. Румянцева, И.Н. Захаровой. — М.; 2014. — 76 с.

8. McCarthy EK, Murray DM, Kiely ME. Iron deficiency during the first 1000 days of life: are we doing enough to protect the developing brain? Proc Nutr Soc. 2022;81(1):108–118. doi: https://doi.org/10.1017/S0029665121002858

9. Верхососова А.В., Булатова Е.М., Богданова Н.М., Габрусская Т.В. Дефицит железа и его отрицательное влияние на развитие детей раннего возраста. Диетологические возможности постнатальной коррекции дефицита железа // Лечащий врач. — 2011. — № 8. — С. 38–44.

10. Widdowson EM, Southgate DA, Hey E., Lindblad BS. Fetal growth and body composition. Perinatal Nutrition. New York: Academic Press; 1988. pp. 3–14.

11. Domellöf M. Iron requirements, absorption and metabolism in infancy and childhood. Curr Opin Clin Nutr Metab Care. 2007;10(3):329–335. doi: https://doi.org/10.1097/MCO.0b013e3280523aaf

12. Cao C, O’Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev. 2013;71(1):35–51. doi: https://doi.org/10.1111/j.1753-4887.2012.00550.x

13. Hussain MA, Gaafar TH, Laulicht M, Hoffebrand AV. Relation of maternal and cord blood serum ferritin. Arch Dis Child. 1977;52(10):782–784. doi: https://doi.org/10.1136/adc.52.10.782

14. Hokama T, Takenaka S, Hirayama K, et al. Iron status of newborns born to iron deficient anaemic mothers. J Trop Pediatr. 1996;42(2):75–77. doi: https://doi.org/10.1093/tropej/42.2.75

15. Shao J, Lou J, Rao R, et al. Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr. 2012;142(11):2004–2009. doi: https://doi.org/10.3945/jn.112.162362

16. Georgieff MK, MIlls MM, Gordon K, Wobken JD. Reduced neonatal liver iron concentrations after uteroplacental insufficiency. J Pediatr. 1995;127(2):308–304. doi: https://doi.org/10.1016/s0022-3476(95)70317-9

17. Charnley M, Newson L, Weeks A, Abayomi J. Pregnant Women Living with Obesity: A Cross-Sectional Observational Study of Dietary Quality and Pregnancy Outcomes. Nutrients. 2021;13(5):1652. doi: https://doi.org/10.3390/nu13051652

18. Dosch NC, Guslits EF, Weber MB, et al. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr. 2016;172:20–28. doi: https://doi.org/10.1016/j.jpeds.2016.02.023

19. Jaime-Perez JC, Herrera-Garza JL, Gomez-Almaguer D. Suboptimal fetal iron acquisition under a maternal environment. Arch Med Res. 2005;36(5):598–602. doi: https://doi.org/10.1016/j.arcmed.2005.03.023

20. Kumar A, Rai AK, Basu S, et al. Cord blood and breast milk iron status in maternal anemia. Pediatrics. 2008;121(3):e673–e677. doi: https://doi.org/10.1542/peds.2007-1986

21. El-Farrash RA, Ismail EA, Nada AS. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr Blood Cancer. 2012;58(2):233–238. doi: https://doi.org/10.1002/pbc.23184

22. Georgieff MK, Wewerka SW, Nelson CA, Deregnier RA. Iron status at 9 months of infants with low iron stores at birth. J Pediatr. 2002;141(3):405–409. doi: https://doi.org/10.1067/mpd.2002.127090

23. Zhang Y, Jin L, Liu JM, et al. Maternal Hemoglobin Concentration during Gestation and Risk of Anemia in Infancy: Secondary Analysis of a Randomized Controlled Trial. J Pediatr. 2016;175:106–110.e2. doi: https://doi.org/10.1016/j.jpeds.2016.05.011

24. Wang M. Iron Deficiency and Other Types of Anemia in Infants and Children. Am Fam Physician. 2016;93(4):270–278.

25. Sundararajan S, Rabe H. Prevention of iron deficiency anemia in infants and toddlers. Pediatr Res. 2021;89(1):63–73. doi: https://doi.org/10.1038/s41390-020-0907-5

26. Herold J, Abele H, Graf J. Effects of timing of umbilical cord clamping for mother and newborn: a narrative review. Arch Gynecol Obstet. 2023. doi: https://doi.org/10.1007/s00404-023-06990-1

27. Berglund S, Westrup B, Domellöf M. Iron supplements reduce the risk of iron deficiency anemia in marginally low birth weight infants. Pediatrics. 2010;126(4):e874–e883. doi: https://doi.org/10.1542/peds.2009-3624

28. Amin SB, Orlando M, Eddins A, et al. In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J Pediatr. 2010;156(3):377–381. doi: https://doi.org/10.1016/j.jpeds.2009.09.049

29. Domellöf M, Georgieff MK. Postdischarge Iron Requirements of the Preterm Infant. J Pediatr. 2015;167(4 Suppl):S31–S35. doi: https://doi.org/10.1016/j.jpeds.2015.07.018

30. Cusick SE, Georgieff MK, Rao R. Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients. 2018;10(2):227. doi: https://doi.org/10.3390/nu10020227

31. Bora R, Akhtar SS, Venkatasubramaniam A, et al. Effect of 40-cm segment umbilical cord milking on hemoglobin and serum ferritin at 6 months of age in full-term infants of anemic and nonanemic mothers. J Perinatol. 2015;35(10):832–836. doi: https://doi.org/10.1038/jp.2015.92

32. Oski FA. Iron deficiency in infancy and childhood. N Engl J Med. 1993;329(3):190–193. doi: https://doi.org/10.1056/NEJM199307153290308

33. Scientific Advisory Committee on Nutrition (SACN). Iron and Health. London: The Stationary Office; 2010. 360 p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/339309/SACN_Iron_and_Health_Report.pdf. Accessed on October 04, 2023.

34. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on dietary reference values for iron. EFSA Journal. 2015;13(10):4254. doi: https://doi.org/10.2903/j.efsa.2015.4254

35. Armitage AE, Moretti D. The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals (Basel). 2019;12(2):59. doi: https://doi.org/10.3390/ph12020059

36. Lynch S, Pfeiffer CM, Georgieff MK, et al. Biomarkers of nutrition for development (bond)-iron review. J Nutr. 2018;148(Suppl 1):1001S–1067S. doi: https://doi.org/10.1093/jn/nxx036

37. Daru J, Colman K, Stanworth SJ, et al. Serum ferritin as an indicator of iron status: What do we need to know? Am J Clin Nutr. 2017;106(Suppl 6):1634S–1639S. doi: https://doi.org/10.3945/ajcn.117.155960

38. WHO. Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization; 2020.

39. Aguilar R, Moraleda C, Quinto L, et al. Challenges in the diagnosis of iron deficiency in children exposed to high prevalence of infections. PLoS ONE. 2012;7(11):e50584. doi: https://doi.org/10.1371/journal.pone.0050584

40. Bäckström F, Chmielewska A, Domellöf M, Berglund SK. Normal range and predictors of serum erythroferrone in infants. Pediatr Res. 2023;94(3):965–970. doi: https://doi.org/10.1038/s41390-023-02594-2

41. Hugman A. Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol. 2006;28(2):75–83. doi: https://doi.org/10.1111/j.1365-2257.2006.00768.x

42. Qasem WA, Friel JK. An Overview of Iron in Term Breast-Fed Infants. Clin Med Insights Pediatr. 2015;9:79–84. doi: https://doi.org/10.4137/CMPed.S26572

43. Wegmüller R, Bah A, Kendall L, et al. Hepcidin-guided screen-and-treat interventions for young children with iron-deficiency anaemia in The Gambia: an individually randomised, three-arm, doubleblind, controlled, proof-of-concept, non-inferiority trial. Lancet Glob Health. 2023;11(1):e105–e116. doi: https://doi.org/10.1016/S2214-109X(22)00449-1

44. Mei Z, Flores-Ayala RC, Grummer-Strawn LM, Brittenham GM. Is erythrocyte protoporphyrin a better single screening test for iron deficiency compared to hemoglobin or mean cell volume in children and women? Nutrients. 2017;9(6):557. doi: https://doi.org/10.3390/nu9060557

45. Roba KT, O’Connor TP, Belachew T, O’Brien NM. Concurrent iron and zinc deficiencies in lactating mothers and their children 6-23 months of age in two agro-ecological zones of rural Ethiopia. Eur J Nutr. 2018;57(2):655–667. doi: https://doi.org/10.1007/s00394-016-1351-5

46. Shashiraj, Faridi MM, Singh O, Rusia U. Mother’s iron status, breastmilk iron and lactoferrin — are they related? Eur J Clin Nutr. 2006;60(7):903–908. doi: https://doi.org/10.1038/sj.ejcn.1602398

47. Angeles IT, Schultink WJ, Matulessi P, et al. Decreased rate of stunting among anemic Indonesian preschool children through iron supplementation. Am J Clin Nutr. 1993;58(3):339–342. doi: https://doi.org/10.1093/ajcn/58.3.339

48. Chwang LC, Soemantri AG, Pollitt E. Iron supplementation and physical growth of rural Indonesian children. Am J Clin Nutr. 1988;47(3):496–501. doi: https://doi.org/10.1093/ajcn/47.3.496

49. Adhikari RP, Shrestha ML, Acharya A, Upadhaya N. Determinants of stunting among children aged 0-59 months in Nepal: findings from Nepal Demographic and health Survey, 2006, 2011, and 2016. BMC Nutr. 2019;5:37. doi: https://doi.org/10.1186/s40795-019-0300-0

50. Ramakrishnan U, Nguyen P, Martorell R. Effects of micronutrients on growth of children under 5 y of age: meta-analyses of single and multiple nutrient interventions. Am J Clin Nutr. 2009;89(1):191–203. doi: https://doi.org/10.3945/ajcn.2008.26862

51. Алиева А.М., Намазова-Баранова Л.С., Казюкова Т.В., Студеникин В.М. Представления о метаболизме железа у детей в норме и при инфекционных заболеваниях // Детские инфекции. — 2017. — Т. 16. — № 1: — С. 21-27. — doi: https://doi.org/10.22627/2072-8107-2017-16-1-21-27

52. Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133(5 Suppl 1):1468S–1472S. doi: https://doi.org/10.1093/jn/133.5.1468S

53. Carlson ES, Tkac I, Magid R, et al. Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr. 2009;139(4):672–679. doi: https://doi.org/10.3945/jn.108.096354

54. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3(1):41–51. doi: https://doi.org/10.1111/j.1471-4159.1958.tb12607.x

55. Lozoff B, Brittenham GM, Wolf AW, et al. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics. 1987;79(6):981–995.

56. Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron-deficiency. N Engl J Med. 1991;325(10):687–694. doi: https://doi.org/10.1056/NEJM199109053251004

57. Lozoff B, Jimenez E, Hagen J, et al. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51. doi: https://doi.org/10.1542/peds.105.4.e51

58. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006;160(11):1108–1113. doi: https://doi.org/10.1001/archpedi.160.11.1108

59. Monga M, Walia V, Gandhi A, et al. Effect of iron deficiency anemia on visual evoked potential of growing children. Brain Dev. 2010;32(3):213–216. doi: https://doi.org/10.1016/j.braindev.2009.02.009

60. Algarín C, Peirano P, Garrido M, et al. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2):217–223. doi: https://doi.org/10.1203/01.PDR.0000047657.23156.55

61. Walter T. Effect of iron-deficiency anemia on cognitive skills and neuromaturation in infancy and childhood. Food Nutr Bull. 2003;24(4 Suppl):S104–S110. doi: https://doi.org/10.1177/15648265030244S207

62. Lozoff B, Klein NK, Nelson EC, et al. Behavior of infants with irondeficiency anemia. Child Dev. 1998;69(1):24–36.

63. Hua M, Shi D, Xu W, et al. Differentiation between fetal and postnatal iron deficiency in altering brain substrates of cognitive control in pre-adolescence. BMC Med. 2023;21(1):167. doi: https://doi.org/10.1186/s12916-023-02850-6

64. Agaoglu L, Torun O, Unuvar E, et al. Effects of iron deficiency anemia on cognitive function in children. Arzneimittelforschung. 2007;57(6A):426–430. doi: https://doi.org/10.1055/s-0031-1296691

65. Santos JN, Lemos SM, Rates SP, Lamounier JA. Hearing abilities and language development in anemic children of a public daycare center. Pro Fono. 2008;20(4):255–260. doi: https://doi.org/10.1590/s0104-56872008000400009

66. Nampijja M, Mutua AM, Elliott AM, et al. Low Hemoglobin Levels Are Associated with Reduced Psychomotor and Language Abilities in Young Ugandan Children. Nutrients. 2022;14(7):1452. doi: https://doi.org/10.3390/nu14071452

67. Erikson KM, Jones BC, Beard JL. Iron deficiency alters dopamine transporter functioning in rat striatum. J Nutr. 2000;130(11):2831–2837. doi: https://doi.org/10.1093/jn/130.11.2831

68. Pivina L, Semenova Y, Doşa MD, et al. Iron Deficiency, Cognitive Functions, and Neurobehavioral Disorders in Children. J Mol Neurosci. 2019;68(1):1–10. doi: https://doi.org/10.1007/s12031-019-01276-1

69. McCann S, Perapoch Amadó M, Moore SE. The Role of Iron in Brain Development: A Systematic Review. Nutrients. 2020;12(7):2001. doi: https://doi.org/10.3390/nu12072001

70. Fretham SJ, Carlson ES, Wobken J, et al. Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus. 2012;22(8):1691–1702. doi: https://doi.org/10.1002/hipo.22004

71. Carlson ES, Fretham SJ, Unger E, et al. Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord. 2010;2(3):133–143. doi: https://doi.org/10.1007/s11689-010-9049-0

72. Barks AK, Liu SX, Georgieff MK, et al. Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients. 2021;13(11):3857. doi: https://doi.org/10.3390/nu13113857

73. Maxwell AM, Rao RB. Perinatal iron deficiency as an early risk factor for schizophrenia. Nutr Neurosci. 2022;25(10):2218–2227. doi: https://doi.org/10.1080/1028415X.2021.1943996

74. McCarthy EK, Murray DM, Hourihane JOB, et al. Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternalinfant cohort. Am J Clin Nutr. 2021;113(4):1032–1041. doi: https://doi.org/10.1093/ajcn/nqaa367

75. Guo Y, Yu L, Wu ZY, et al. Gender-specific association between serum ferritin and neurodevelopment in infants aged 6 to 12 months. Sci Rep. 2023;13(1):2490. doi: https://doi.org/10.1038/s41598-023-29690-x

76. Berglund S, Lönnerdal B, Westrup B, Domellöf M. Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants. Am J Clin Nutr. 2011;94(6):1553–1561. doi: https://doi.org/10.3945/ajcn.111.013938

77. Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38 Suppl 1:20–26. doi: https://doi.org/10.1111/ijlh.12505

78. Pagani A, Nai A, Silvestri L, Camaschella C. Hepcidin and anemia: A tight relationship. Front Physiol. 2019;10:1294. doi: https://doi.org/10.3389/fphys.2019.01294

79. Румянцев А.Г., Захарова И.Н., Чернов В.М. и др. Профилактика и лечение железодефицитной анемии у детей первого года жизни // Педиатрическая фармакология. — 2015. — Т. 12. — № 4. — С. 387–391. — doi: https://doi.org/10.15690/pf.v12i4.1418

80. German KR, Juul SE. Iron and Neurodevelopment in Preterm Infants: A Narrative Review. Nutrients. 2021;13(11):3737. doi: https://doi.org/10.3390/nu13113737

81. Fite MB, Tura AK, Yadeta TA, et al. Prevalence, predictors of low birth weight and its association with maternal iron status using serum ferritin concentration in rural Eastern Ethiopia: a prospective cohort study. BMC Nutr. 2022;8(1):70. doi: https://doi.org/10.1186/s40795-022-00561-4

82. Lin Q, Hu DW, Hao XH, et al. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast. 2023;2023:4226139. doi: https://doi.org/10.1155/2023/4226139

83. WHO. Global Nutriton Targets 2025: Anaemia Policy Brief. Geneva: World Health Organization; 2014. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-14.

84. Accessed on October 04, 2023. 84. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259. doi: https://doi.org/10.1016/S0140-6736(17)32154-2

85. Gedfie S, Getawa S, Melku M. Prevalence and Associated Factors of Iron Deficiency and Iron Deficiency Anemia Among Under-5 Children: A Systematic Review and Meta-Analysis. Glob Pediatr Health. 2022;9:2333794X221110860. doi: https://doi.org/10.1177/2333794X221110860

86. Krishnaswamy S, Bhattarai D, Bharti B, et al. Iron Deficiency and Iron Deficiency Anemia in 3-5 months-old, Breastfed Healthy Infants. Indian J Pediatr. 2017;84(7):505–508. doi: https://doi.org/10.1007/s12098-017-2330-4

87. Jaber L, Jbarah S. Prevalence of iron deficiency and iron deficiency anemia in infants aged 9 to 15 months in a low income population (2005–2010). Harefuah. 2017;156(6):358–362.

88. WHO, UNICEF/UNU. Iron Deficiency Anaemia: Assessment, Prevention and Control, a Guide for Programme Managers. Geneva: World Health Organization; 2001.

89. Железодефицитная анемия: клинические рекомендации. — Минздрав России; 2021. Доступно по: https://diseases.medelement.com/disease/железодефицитная-анемия-кр-рф-2021/17027. Ссылка активна на 04.10.2023.

90. United Nations Children’s Fund, United Nations University, World Health Organization. Iron deficiency anemia: assessment, prevention and control. A guide for programme managers. 2011. p. 114. Available online: http://s2.medicina.uady.mx/observatorio/docs/an/li/AN2001_Li_WHO.pdf. Accessed on October 04, 2023.

91. Sebastiani G, Herranz Barbero A, Borrás-Novell C, et al. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients. 2019;11(3):557. doi: https://doi.org/10.3390/nu11030557

92. Baroni L, Goggi S, Battaglino R, et al. Vegan Nutrition for Mothers and Children: Practical Tools for Healthcare Providers. Nutrients. 2018;11(1):5. doi: https://doi.org/10.3390/nu11010005

93. Zhang J, Li Q, Song Y, et al. Nutritional factors for anemia in pregnancy: A systematic review with meta-analysis. Front Public Health. 2022;10:1041136. doi: https://doi.org/10.3389/fpubh.2022.1041136

94. Wrześniak M, Kepinska M, Królik M, Milnerowicz H. Influence of tobacco smoking on transferrin sialylation during pregnancy in smoking and non-smoking women with iron deficiency. Environ Toxicol Pharmacol. 2016;46:95–102. doi: https://doi.org/10.1016/j.etap.2016.07.001

95. WHO. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva: World Health Organization; 2012. Available online: https://apps.who.int/iris/bitstream/handle/10665/77770/9789241501996_eng.pdf. Accessed on October 04, 2023.

96. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins — Obstetrics. Anemia in Pregnancy: ACOG Practice Bulletin, Number 233. Obstet Gynecol. 2021;138(2):e55–e64. doi: https://doi.org/10.1097/AOG.0000000000004477

97. Нормальная беременность: клинические рекомендации. — Минздрав России; 2020. Доступно по: https://cr.minzdrav.gov.ru/recomend/288_1. Ссылка активна на 04.10.2023.

98. Hao L, Shan Q, Wei J, et al. Lactoferrin: Major Physiological Functions and Applications. Curr Protein Pept Sci. 2019;20(2):139–144. doi: https://doi.org/10.2174/1389203719666180514150921

99. Moffatt ME, Longstaffe S, Besant J, Dureski C. Prevention of iron deficiency and psychomotor decline in high-risk infants through use of iron-fortified infant formula: a randomized clinical trial. J Pediatr. 1994;125(4):527–534. doi: https://doi.org/10.1016/s0022-3476(94)70003-6

100. Baker RD, Greer FR. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–1050. doi: https://doi.org/10.1542/peds.2010-2576

101. Koletzko B, Baker S, Cleghorn G, et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr. 2005;41(5):584–599. doi: https://doi.org/10.1097/01.mpg.0000187817.38836.42

102. Domellöf M, Lönnerdal B, Dewey KG, et al. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. 2004;79(1):111–115. doi: https://doi.org/10.1093/ajcn/79.1.111

103. Björmsjö M, Hernell O, Lönnerdal B, Berglund SK. Reducing Iron Content in Infant Formula from 8 to 2 mg/L Does Not Increase the Risk of Iron Deficiency at 4 or 6 Months of Age: A Randomized Controlled Trial. Nutrients. 2020;13(1):3. doi: https://doi.org/10.3390/nu13010003

104. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. — М.: НМИЦ здоровья детей; 2019. — 112 с.

105. Morley R, Abbott R, Fairweather-Tait S, et al. Iron fortified follow on formula from 9 to 18 months improves iron status but not development or growth: a randomised trial. Arch Dis Child. 1999; 81(3):247–252. doi: https://doi.org/10.1136/adc.81.3.247

106. Daly A, MacDonald A, Aukett A, et al. Prevention of anaemia in inner city toddlers by an iron supplemented cows’ milk formula. Arch Dis Child. 1996;75(1):9–16. doi: https://doi.org/10.1136/adc.75.1.9

107. Williams J, Wolff A, Daly A, et al. Iron supplemented formula milk related to reduction in psychomotor decline in infants from inner city areas: randomised study. BMJ. 1999;318(7185):693–697. doi: https://doi.org/10.1136/bmj.318.7185.693

108. Walter T, Pino P, Pizarro F, et al. Prevention of iron-deficiency anemia: comparison of high- and low-iron formulas in term healthy infants after six months of life. J Pediatr. 1998;132(4):635–640. doi: https://doi.org/10.1016/s0022-3476(98)70352-x

109. Lozoff B, Castillo M, Clark KM, Smith JB. Iron-fortified vs low-iron infant formula: developmental outcome at 10 years. Arch Pediatr Adolesc Med. 2012;166(3):208–215. doi: https://doi.org/10.1001/archpediatrics.2011.197

110. Fewtrell M, Bronsky J, Campoy C, et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–132. doi: https://doi.org/10.1097/MPG.0000000000001454

111. Eichler K, Wieser S, Rüthemann I, Brügger U. Effects of micronutrient fortified milk and cereal food for infants and children: a systematic review. BMC Public Health. 2012;12:506. doi: https://doi.org/10.1186/1471-2458-12-506

112. Jonsdottir OH, Thorsdottir I, Hibberd PL, et al. Timing of the introduction of complementary foods in infancy: a randomized controlled trial. Pediatrics. 2012;130(6):1038–1045. doi: https://doi.org/10.1542/peds.2011-3838

113. Theurich MA, Fewtrell M, Baumgartner J, et al. Moving Complementary Feeding Forward: Report on a Workshop of the Federation of International Societies for Pediatric Gastroenterology, Hepatology and Nutrition (FISPGHAN) and the World Health Organization Regional Office for Europe. J Pediatr Gastroenterol Nutr. 2022;75(4):411–417. doi: https://doi.org/10.1097/MPG.0000000000003562

114. Engelmann MD, Sandstrom B, Michaelsen KF. Meat intake and iron status in late infancy: an intervention study. J Pediatr Gastroenterol Nutr. 1998;26(1):26–33. doi: https://doi.org/10.1097/00005176-199801000-00005

115. Morgan J, Taylor A, Fewtrell M. Meat consumption is positively associated with psychomotor outcome in children up to 24 months of age. J Pediatr Gastroenterol Nutr. 2004;39(5):493–498. doi: https://doi.org/10.1097/00005176-200411000-00009

116. Wilk VC, McGuire MK, Roe AJ. Early Life Beef Consumption Patterns Are Related to Cognitive Outcomes at 1-5 Years of Age: An Exploratory Study. Nutrients. 2022;14(21):4497. doi: https://doi.org/10.3390/nu14214497

117. Krebs NF, Westcott JE, Butler N, et al. Meat as a first complementary food for breastfed infants: feasibility and impact on zinc intake and status. J Pediatr Gastroenterol Nutr. 2006;42(2):207–214. doi: https://doi.org/10.1097/01.mpg.0000189346.25172.fd

118. Yeung GS, Zlotkin SH. Efficacy of meat and iron-fortified commercial cereal to prevent iron depletion in cow milk-fed infants 6 to 12 months of age: a randomized controlled trial. Can J Public Health. 2000;91(4):263–267. doi: https://doi.org/10.1007/BF03404285

119. Hallberg L, Hoppe M, Andersson M, Hulthén L. The role of meat to improve the critical iron balance during weaning. Pediatrics. 2003;111(4 Pt 1):864–870. doi: https://doi.org/10.1542/peds.111.4.864

120. da Silva Lopes K, Yamaji N, Rahman MO, et al. Nutritionspecific interventions for preventing and controlling anaemia throughout the life cycle: an overview of systematic reviews. Cochrane Database Syst Rev. 2021;9(9):CD013092. doi: https://doi.org/10.1002/14651858.CD013092.pub2

121. Troesch B, Egli I, Zeder C, et al. Optimization of a phytasecontaining micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am J Clin Nutr. 2009;89(2):539–544. doi: https://doi.org/10.3945/ajcn.2008.27026

122. Hackl LS, Abizari AD, Speich C, et al. Micronutrient-fortified rice can be a significant source of dietary bioavailable iron in schoolchildren from rural Ghana. Sci Adv. 2019;5:eaau0790. doi: https://doi.org/10.1126/sciadv.aau0790

123. Caroli M, Vania A, Tomaselli MA, et al. Breastfed and Formula-Fed Infants: Need of a Different Complementary Feeding Model? Nutrients. 2021;13(11):3756. doi: https://doi.org/10.3390/nu13113756

124. Tang M, Sheng XY, Krebs NF, Hambidge KM. Meat as complementary food for older breastfed infants and toddlers: a randomized, controlled trial in rural China. Food Nutr Bull. 2014;35(4 Suppl):S188–S192. doi: https://doi.org/10.1177/15648265140354S304

125. Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res. 2023;16:2661–2674. doi: https://doi.org/10.2147/JIR.S414316

126. Lucotte G, Dieterlen F. A European allele map of the C282Y mutation of hemochromatosis: Celtic versus Viking origin of the mutation? Blood Cells Mol Dis. 2003;31(2):262–267. doi: https://doi.org/10.1016/s1079-9796(03)00133-5

127. Lönnerdal B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am J Clin Nutr. 2017;106(Suppl 6):1681S–1687S. doi: https://doi.org/10.3945/ajcn.117.156042

128. Soofi S, Cousens S, Iqbal SP, et al. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet. 2013;382(9886):29–40. doi: https://doi.org/10.1016/S0140-6736(13)60437-7


Рецензия

Для цитирования:


Беляева И.А., Бомбардирова Е.П., Турти Т.В. Латентный дефицит железа у детей раннего возраста: современные профилактические стратегии. Педиатрическая фармакология. 2023;20(5):478-489. https://doi.org/10.15690/pf.v20i5.2634

For citation:


Belyaeva I.A., Bombardirova E.P., Turti T.V. Latent Iron Deficiency in Tender-Age Infants: Modern Preventive Measures. Pediatric pharmacology. 2023;20(5):478-489. (In Russ.) https://doi.org/10.15690/pf.v20i5.2634

Просмотров: 681


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)