Latent Iron Deficiency in Tender-Age Infants: Modern Preventive Measures
https://doi.org/10.15690/pf.v20i5.2634
Abstract
This article presents practical data, topical for pediatricians, on the child’s body provision with the essential trace element — iron; and on iron deficiency conditions development and staging in children. Clinical and laboratory criteria for the identification of such conditions are defined; data on their prevalence in tender-age infants is outlined. The results of modern studies showing the correlations between iron deficiency and delayed developmental conditions in children (including cognitive ones) are presented. Alimental factors (associated with body provision with iron) and nutritional strategies (associated with supplemental feeding timely administration, adequacy, and diversity) are described in detail. They are focused on effective and safe prevention of latent iron deficiency.
About the Authors
Irina A. BelyaevaRussian Federation
Irina A. Belyaeva, MD, PhD, Professor of the RAS
10/1 Fotievoy Str., Moscow, 119333
tel.: +7 (905) 728-58-02
Disclosure of interest:
lecturing for pharmaceutical companies Progress, Akrikhin, Bayer, AstraZeneca
Elena P. Bombardirova
Russian Federation
Elena P. Bombardirova, MD, PhD, Professor
Moscow
Disclosure of interest:
Elena P. Bombardirova confirmed the absence of a reportable conflict of interests
Tatyana V. Turti
Russian Federation
Tatyana V. Turti, MD, PhD, Professor
Moscow
Disclosure of interest:
lecturing for pharmaceutical companies Progress, Akrikhin, Bayer, AstraZeneca
References
1. Namazova-Baranova LS, Makarova SG, Studenikin VM. Vitaminy i mineral’nye veshchestva v praktike pediatra. Federal State Autonomous Institution “Scientific Center for Children’s Health” of the Russian Ministry of Health; Union of Pediatricians of Russia. Moscow: Pediatr; 2016. 299 p. (In Russ).
2. Natsional’naya programma po optimizatsii obespechennosti vitaminami i mineral’nymi veshchestvami detei Rossii (i ispol’zovaniyu vitaminnykh i vitaminno-mineral’nykh kompleksov i obogashchennykh produktov v pediatricheskoi praktike). Union of Pediatricians of Russia. Moscow: Pediatr; 2017. 152 p. (In Russ).
3. Markova IV, Kalinicheva VI. Pediatricheskaya farmakologiya: Guide for doctors. 2nd ed., revised and additional. Leningrad: Meditsina; 1987. 495 p. (In Russ).
4. Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301–323. doi: https://doi.org/10.1159/000107673 5. Domellöf M, Braegger C, Campoy C, et al. Iron requirements of infants and toddlers. J Pediatr Gastroenterol Nutr. 2014;58(1):119– 129. doi: https://doi.org/10.1097/MPG.0000000000000206
5. Ladodo KS, Druzhinina LV. Detskoe pitanie: ot rozhdeniya do goda. Moscow: Labirint press; 2007. 237 p. (In Russ). 7. Diagnostika i lechenie zhelezodefitsitnoi anemii u detei i podrostkov: Manual for doctors / Rumyantsev AG, Zakharovai IN, eds. Moscow; 2014. 76 p. (In Russ).
6. McCarthy EK, Murray DM, Kiely ME. Iron deficiency during the first 1000 days of life: are we doing enough to protect the developing brain? Proc Nutr Soc. 2022;81(1):108–118. doi: https://doi. org/10.1017/S0029665121002858
7. Verkhososova AV, Bulatova EM, Bogdanova NM, Gabrusskaya TV. Defitsit zheleza i ego otritsatel’noe vliyanie na razvitie detei rannego vozrasta. Dietologicheskie vozmozhnosti postnatal’noi korrektsii defitsita zheleza. Lechaschi Vrach. 2011;(8):38–44. (In Russ).
8. Widdowson EM, Southgate DA, Hey E., Lindblad BS. Fetal growth and body composition. Perinatal Nutrition. New York: Academic Press; 1988. pp. 3–14.
9. Domellöf M. Iron requirements, absorption and metabolism in infancy and childhood. Curr Opin Clin Nutr Metab Care. 2007;10(3):329– 335. doi: https://doi.org/10.1097/MCO.0b013e3280523aaf
10. Cao C, O’Brien KO. Pregnancy and iron homeostasis: an update. Nutr Rev. 2013;71(1):35–51. doi: https://doi.org/10.1111/j.1753- 4887.2012.00550.x 13. Hussain MA, Gaafar TH, Laulicht M, Hoffebrand AV. Relation of maternal and cord blood serum ferritin. Arch Dis Child. 1977;52(10):782– 784. doi: https://doi.org/10.1136/adc.52.10.782
11. Hokama T, Takenaka S, Hirayama K, et al. Iron status of newborns born to iron deficient anaemic mothers. J Trop Pediatr. 1996;42(2):75–77. doi: https://doi.org/10.1093/tropej/42.2.75
12. Shao J, Lou J, Rao R, et al. Maternal serum ferritin concentration is positively associated with newborn iron stores in women with low ferritin status in late pregnancy. J Nutr. 2012;142(11):2004–2009. doi: https://doi.org/10.3945/jn.112.162362
13. Georgieff MK, MIlls MM, Gordon K, Wobken JD. Reduced neonatal liver iron concentrations after uteroplacental insufficiency. J Pediatr. 1995;127(2):308–304. doi: https://doi.org/10.1016/ s0022-3476(95)70317-9
14. Charnley M, Newson L, Weeks A, Abayomi J. Pregnant Women Living with Obesity: A Cross-Sectional Observational Study of Dietary Quality and Pregnancy Outcomes. Nutrients. 2021;13(5):1652. doi: https://doi.org/10.3390/nu13051652
15. Dosch NC, Guslits EF, Weber MB, et al. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr. 2016;172:20–28. doi: https://doi.org/10.1016/j.jpeds.2016.02.023
16. Jaime-Perez JC, Herrera-Garza JL, Gomez-Almaguer D. Suboptimal fetal iron acquisition under a maternal environment. Arch Med Res. 2005;36(5):598–602. doi: https://doi.org/10.1016/j.arcmed.2005.03.023
17. Kumar A, Rai AK, Basu S, et al. Cord blood and breast milk iron status in maternal anemia. Pediatrics. 2008;121(3):e673–e677. doi: https://doi.org/10.1542/peds.2007-1986
18. El-Farrash RA, Ismail EA, Nada AS. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr Blood Cancer. 2012;58(2):233–238. doi: https://doi.org/10.1002/pbc.23184
19. Georgieff MK, Wewerka SW, Nelson CA, Deregnier RA. Iron status at 9 months of infants with low iron stores at birth. J Pediatr. 2002;141(3):405–409. doi: https://doi.org/10.1067/mpd.2002.127090
20. Zhang Y, Jin L, Liu JM, et al. Maternal Hemoglobin Concentration during Gestation and Risk of Anemia in Infancy: Secondary Analysis of a Randomized Controlled Trial. J Pediatr. 2016;175:106–110.e2. doi: https://doi.org/10.1016/j.jpeds.2016.05.011
21. Wang M. Iron Deficiency and Other Types of Anemia in Infants and Children. Am Fam Physician. 2016;93(4):270–278.
22. Sundararajan S, Rabe H. Prevention of iron deficiency anemia in infants and toddlers. Pediatr Res. 2021;89(1):63–73. doi: https://doi.org/10.1038/s41390-020-0907-5
23. Herold J, Abele H, Graf J. Effects of timing of umbilical cord clamping for mother and newborn: a narrative review. Arch Gynecol Obstet. 2023. doi: https://doi.org/10.1007/s00404-023-06990-1
24. Berglund S, Westrup B, Domellöf M. Iron supplements reduce the risk of iron deficiency anemia in marginally low birth weight infants. Pediatrics. 2010;126(4):e874–e883. doi: https://doi.org/10.1542/peds.2009-3624
25. Amin SB, Orlando M, Eddins A, et al. In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J Pediatr. 2010;156(3):377–381. doi: https://doi.org/10.1016/j.jpeds.2009.09.049
26. Domellöf M, Georgieff MK. Postdischarge Iron Requirements of the Preterm Infant. J Pediatr. 2015;167(4 Suppl):S31–S35. doi: https://doi.org/10.1016/j.jpeds.2015.07.018
27. Cusick SE, Georgieff MK, Rao R. Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients. 2018;10(2):227. doi: https://doi.org/10.3390/nu10020227
28. Bora R, Akhtar SS, Venkatasubramaniam A, et al. Effect of 40-cm segment umbilical cord milking on hemoglobin and serum ferritin at 6 months of age in full-term infants of anemic and nonanemic mothers. J Perinatol. 2015;35(10):832–836. doi: https://doi.org/10.1038/jp.2015.92
29. Oski FA. Iron deficiency in infancy and childhood. N Engl J Med. 1993;329(3):190–193. doi: https://doi.org/10.1056/NEJM199307153290308
30. Scientific Advisory Committee on Nutrition (SACN). Iron and Health. London: The Stationary Office; 2010. 360 p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/339309/SACN_Iron_and_ Health_Report.pdf. Accessed on October 04, 2023.
31. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on dietary reference values for iron. EFSA Journal. 2015;13(10):4254. doi: https://doi.org/10.2903/j.efsa.2015.4254
32. Armitage AE, Moretti D. The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals (Basel). 2019;12(2):59. doi: https://doi.org/10.3390/ph12020059
33. Lynch S, Pfeiffer CM, Georgieff MK, et al. Biomarkers of nutrition for development (bond)-iron review. J Nutr. 2018;148(Suppl 1):1001S–1067S. doi: https://doi.org/10.1093/jn/nxx036
34. Daru J, Colman K, Stanworth SJ, et al. Serum ferritin as an indicator of iron status: What do we need to know? Am J Clin Nutr. 2017;106(Suppl 6):1634S–1639S. doi: https://doi.org/10.3945/ajcn.117.155960
35. WHO. Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization; 2020.
36. Aguilar R, Moraleda C, Quinto L, et al. Challenges in the diagnosis of iron deficiency in children exposed to high prevalence of infections. PLoS ONE. 2012;7(11):e50584. doi: https://doi.org/10.1371/journal.pone.0050584
37. Bäckström F, Chmielewska A, Domellöf M, Berglund SK. Normal range and predictors of serum erythroferrone in infants. Pediatr Res. 2023;94(3):965–970. doi: https://doi.org/10.1038/s41390-023-02594-2
38. Hugman A. Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol. 2006;28(2):75–83. doi: https://doi.org/10.1111/j.1365-2257.2006.00768.x
39. Qasem WA, Friel JK. An Overview of Iron in Term Breast-Fed Infants. Clin Med Insights Pediatr. 2015;9:79–84. doi: https://doi.org/10.4137/CMPed.S26572
40. Wegmüller R, Bah A, Kendall L, et al. Hepcidin-guided screenand- treat interventions for young children with iron-deficiency anaemia in The Gambia: an individually randomised, three-arm, doubleblind, controlled, proof-of-concept, non-inferiority trial. Lancet Glob Health. 2023;11(1):e105–e116. doi: https://doi.org/10.1016/S2214-109X(22)00449-1
41. Mei Z, Flores-Ayala RC, Grummer-Strawn LM, Brittenham GM. Is erythrocyte protoporphyrin a better single screening test for iron deficiency compared to hemoglobin or mean cell volume in children and women? Nutrients. 2017;9(6):557. doi: https://doi.org/10.3390/nu9060557
42. Roba KT, O’Connor TP, Belachew T, O’Brien NM. Concurrent iron and zinc deficiencies in lactating mothers and their children 6-23 months of age in two agro-ecological zones of rural Ethiopia. Eur J Nutr. 2018;57(2):655–667. doi: https://doi.org/10.1007/s00394-016-1351-5
43. Shashiraj, Faridi MM, Singh O, Rusia U. Mother’s iron status, breastmilk iron and lactoferrin — are they related? Eur J Clin Nutr. 2006;60(7):903–908. doi: https://doi.org/10.1038/sj.ejcn.1602398
44. Angeles IT, Schultink WJ, Matulessi P, et al. Decreased rate of stunting among anemic Indonesian preschool children through iron supplementation. Am J Clin Nutr. 1993;58(3):339–342. doi: https://doi.org/10.1093/ajcn/58.3.339
45. Chwang LC, Soemantri AG, Pollitt E. Iron supplementation and physical growth of rural Indonesian children. Am J Clin Nutr. 1988;47(3):496–501. doi: https://doi.org/10.1093/ajcn/47.3.496
46. Adhikari RP, Shrestha ML, Acharya A, Upadhaya N. Determinants of stunting among children aged 0-59 months in Nepal: findings from Nepal Demographic and health Survey, 2006, 2011, and 2016. BMC Nutr. 2019;5:37. doi: https://doi.org/10.1186/s40795-019-0300-0
47. Ramakrishnan U, Nguyen P, Martorell R. Effects of micronutrients on growth of children under 5 y of age: meta-analyses of single and multiple nutrient interventions. Am J Clin Nutr. 2009;89(1):191– 203. doi: https://doi.org/10.3945/ajcn.2008.26862
48. Aliyeva AM, Namazova-Baranova LS, Kazyukova ТV, Studenikin VM. The iron metabolism in children is normal also at infectious diseases. Children infections. 2017;16(1):21–27. (In Russ). doi: https://doi.org/10.22627/2072-8107-2017-16-1-21-27
49. Beard J. Iron deficiency alters brain development and functioning. J Nutr. 2003;133(5 Suppl 1):1468S–1472S. doi: https://doi.org/10.1093/jn/133.5.1468S
50. Carlson ES, Tkac I, Magid R, et al. Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr. 2009;139(4):672–679. doi: https://doi.org/10.3945/jn.108.096354
51. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958;3(1):41–51. doi: https://doi.org/10.1111/j.1471-4159.1958.tb12607.x
52. Lozoff B, Brittenham GM, Wolf AW, et al. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics. 1987;79(6):981–995. 56. Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron-deficiency. N Engl J Med. 1991;325(10):687– 694. doi: https://doi.org/10.1056/NEJM199109053251004
53. Lozoff B, Jimenez E, Hagen J, et al. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51. doi: https://doi.org/10.1542/peds.105.4.e51 58. Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006;160(11):1108–1113. doi: https://doi.org/10.1001/archpedi.160.11.1108
54. Monga M, Walia V, Gandhi A, et al. Effect of iron deficiency anemia on visual evoked potential of growing children. Brain Dev. 2010;32(3):213–216. doi: https://doi.org/10.1016/j.braindev.2009.02.009
55. Algarín C, Peirano P, Garrido M, et al. Iron deficiency anemia in infancy: long-lasting effects on auditory and visual system functioning. Pediatr Res. 2003;53(2):217–223. doi: https://doi.org/10.1203/01.PDR.0000047657.23156.55
56. Walter T. Effect of iron-deficiency anemia on cognitive skills and neuromaturation in infancy and childhood. Food Nutr Bull. 2003;24(4 Suppl):S104–S110. doi: https://doi.org/10.1177/15648265030244S207
57. Lozoff B, Klein NK, Nelson EC, et al. Behavior of infants with irondeficiency anemia. Child Dev. 1998;69(1):24–36.
58. Hua M, Shi D, Xu W, et al. Differentiation between fetal and postnatal iron deficiency in altering brain substrates of cognitive control in pre-adolescence. BMC Med. 2023;21(1):167. doi: https://doi.org/10.1186/s12916-023-02850-6
59. Agaoglu L, Torun O, Unuvar E, et al. Effects of iron deficiency anemia on cognitive function in children. Arzneimittelforschung. 2007;57(6A):426–430. doi: https://doi.org/10.1055/s-0031-1296691
60. Santos JN, Lemos SM, Rates SP, Lamounier JA. Hearing abilities and language development in anemic children of a public daycare center. Pro Fono. 2008;20(4):255–260. doi: https://doi.org/10.1590/s0104-56872008000400009
61. Nampijja M, Mutua AM, Elliott AM, et al. Low Hemoglobin Levels Are Associated with Reduced Psychomotor and Language Abilities in Young Ugandan Children. Nutrients. 2022;14(7):1452. doi: https://doi.org/10.3390/nu14071452
62. Erikson KM, Jones BC, Beard JL. Iron deficiency alters dopamine transporter functioning in rat striatum. J Nutr. 2000;130(11):2831– 2837. doi: https://doi.org/10.1093/jn/130.11.2831
63. Pivina L, Semenova Y, Doşa MD, et al. Iron Deficiency, Cognitive Functions, and Neurobehavioral Disorders in Children. J Mol Neurosci. 2019;68(1):1–10. doi: https://doi.org/10.1007/s12031-019-01276-1
64. McCann S, Perapoch Amadó M, Moore SE. The Role of Iron in Brain Development: A Systematic Review. Nutrients. 2020;12(7):2001. doi: https://doi.org/10.3390/nu12072001
65. Fretham SJ, Carlson ES, Wobken J, et al. Temporal manipulation of transferrin-receptor-1-dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus. 2012;22(8):1691–1702. doi: https://doi.org/10.1002/hipo.22004
66. Carlson ES, Fretham SJ, Unger E, et al. Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord. 2010;2(3):133–143. doi: https://doi.org/10.1007/s11689-010-9049-0
67. Barks AK, Liu SX, Georgieff MK, et al. Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients. 2021;13(11):3857. doi: https://doi.org/10.3390/nu13113857
68. Maxwell AM, Rao RB. Perinatal iron deficiency as an early risk factor for schizophrenia. Nutr Neurosci. 2022;25(10):2218–2227. doi: https://doi.org/10.1080/1028415X.2021.1943996
69. McCarthy EK, Murray DM, Hourihane JOB, et al. Behavioral consequences at 5 y of neonatal iron deficiency in a low-risk maternalinfant cohort. Am J Clin Nutr. 2021;113(4):1032–1041. doi: https://doi.org/10.1093/ajcn/nqaa367
70. Guo Y, Yu L, Wu ZY, et al. Gender-specific association between serum ferritin and neurodevelopment in infants aged 6 to 12 months. Sci Rep. 2023;13(1):2490. doi: https://doi.org/10.1038/ s41598-023-29690-x
71. Berglund S, Lönnerdal B, Westrup B, Domellöf M. Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants. Am J Clin Nutr. 2011;94(6):1553–1561. doi: https://doi.org/10.3945/ajcn.111.013938
72. Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38 Suppl 1:20–26. doi: https://doi.org/10.1111/ijlh.12505
73. Pagani A, Nai A, Silvestri L, Camaschella C. Hepcidin and anemia: A tight relationship. Front Physiol. 2019;10:1294. doi: https://doi.org/10.3389/fphys.2019.01294
74. Rumyantsev AG, Zakharova IN, Chernov VM, et al. Prevention and treatment of iron-deficiency anemia in children under 1 year of age. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2015;12(4):387–391. (In Russ). doi: https://doi.org/10.15690/ pf.v12i4.1418
75. German KR, Juul SE. Iron and Neurodevelopment in Preterm Infants: A Narrative Review. Nutrients. 2021;13(11):3737. doi: https://doi.org/10.3390/nu13113737
76. Fite MB, Tura AK, Yadeta TA, et al. Prevalence, predictors of low birth weight and its association with maternal iron status using serum ferritin concentration in rural Eastern Ethiopia: a prospective cohort study. BMC Nutr. 2022;8(1):70. doi: https://doi.org/10.1186/s40795-022-00561-4
77. Lin Q, Hu DW, Hao XH, et al. Effect of Hypoxia-Ischemia on the Expression of Iron-Related Proteins in Neonatal Rat Brains. Neural Plast. 2023;2023:4226139. doi: https://doi.org/10.1155/2023/4226139
78. WHO. Global Nutriton Targets 2025: Anaemia Policy Brief. Geneva: World Health Organization; 2014. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-14.4. Accessed on October 04, 2023.
79. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–1259. doi: https://doi.org/10.1016/S0140-6736(17)32154-2
80. Gedfie S, Getawa S, Melku M. Prevalence and Associated Factors of Iron Deficiency and Iron Deficiency Anemia Among Under-5 Children: A Systematic Review and Meta-Analysis. Glob Pediatr Health. 2022;9:2333794X221110860. doi: https://doi.org/10.1177/2333794X221110860
81. Krishnaswamy S, Bhattarai D, Bharti B, et al. Iron Deficiency and Iron Deficiency Anemia in 3-5 months-old, Breastfed Healthy Infants. Indian J Pediatr. 2017;84(7):505–508. doi: https://doi.org/10.1007/s12098-017-2330-4
82. Jaber L, Jbarah S. Prevalence of iron deficiency and iron deficiency anemia in infants aged 9 to 15 months in a low income population (2005–2010). Harefuah. 2017;156(6):358–362.
83. WHO, UNICEF/UNU. Iron Deficiency Anaemia: Assessment, Prevention and Control, a Guide for Programme Managers. Geneva: World Health Organization; 2001.
84. Zhelezodefitsitnaya anemiya: Clinical recommendations. Ministry of Health of Russian Federation; 2021. (In Russ). Доступно по: https://diseases.medelement.com/disease/железодефицитная-анемия-кр-рф-2021/17027. Ссылка активна на 04.10.2023.
85. United Nations Children’s Fund, United Nations University, World Health Organization. Iron deficiency anemia: assessment, prevention and control. A guide for programme managers. 2011. p. 114. Available online: http://s2.medicina.uady.mx/observatorio/docs/an/li/AN2001_Li_WHO.pdf. Accessed on October 04, 2023.
86. Sebastiani G, Herranz Barbero A, Borrás-Novell C, et al. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients. 2019;11(3):557. doi: https://doi.org/10.3390/nu11030557
87. Baroni L, Goggi S, Battaglino R, et al. Vegan Nutrition for Mothers and Children: Practical Tools for Healthcare Providers. Nutrients. 2018;11(1):5. doi: https://doi.org/10.3390/nu11010005
88. Zhang J, Li Q, Song Y, et al. Nutritional factors for anemia in pregnancy: A systematic review with meta-analysis. Front Public Health. 2022;10:1041136. doi: https://doi.org/10.3389/ fpubh.2022.1041136
89. Wrześniak M, Kepinska M, Królik M, Milnerowicz H. Influence of tobacco smoking on transferrin sialylation during pregnancy in smoking and non-smoking women with iron deficiency. Environ Toxicol Pharmacol. 2016;46:95–102. doi: https://doi.org/10.1016/j.etap.2016.07.001
90. WHO. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva: World Health Organization; 2012. Available online: https://apps.who.int/iris/bitstream/handle/10665/77770/9789241501996_eng.pdf. Accessed on October 04, 2023.
91. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins — Obstetrics. Anemia in Pregnancy: ACOG Practice Bulletin, Number 233. Obstet Gynecol. 2021;138(2):e55– e64. doi: https://doi.org/10.1097/AOG.0000000000004477
92. Normal’naya beremennost’: Clinical recommendations. Ministry of Health of Russian Federation; 2020. (In Russ). Доступно по: https://cr.minzdrav.gov.ru/recomend/288_1. Ссылка активна на 04.10.2023.
93. Hao L, Shan Q, Wei J, et al. Lactoferrin: Major Physiological Functions and Applications. Curr Protein Pept Sci. 2019;20(2):139– 144. doi: https://doi.org/10.2174/1389203719666180514150921
94. Moffatt ME, Longstaffe S, Besant J, Dureski C. Prevention of iron deficiency and psychomotor decline in high-risk infants through use of iron-fortified infant formula: a randomized clinical trial. J Pediatr. 1994;125(4):527–534. doi: https://doi.org/10.1016/ s0022-3476(94)70003-6
95. Baker RD, Greer FR. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics. 2010;126(5):1040–1050. doi: https://doi.org/10.1542/peds.2010-2576
96. Koletzko B, Baker S, Cleghorn G, et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr. 2005;41(5):584–599. doi: https://doi.org/10.1097/01.mpg.0000187817.38836.42
97. Domellöf M, Lönnerdal B, Dewey KG, et al. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. 2004;79(1):111–115. doi: https://doi.org/10.1093/ajcn/79.1.111
98. Björmsjö M, Hernell O, Lönnerdal B, Berglund SK. Reducing Iron Content in Infant Formula from 8 to 2 mg/L Does Not Increase the Risk of Iron Deficiency at 4 or 6 Months of Age: A Randomized Controlled Trial. Nutrients. 2020;13(1):3. doi: https://doi.org/10.3390/nu13010003
99. Programma optimizatsii vskarmlivaniya detei pervogo goda zhizni v Rossiiskoi Federatsii: Guidelines. Moscow: National Medical Research Center for Children’s Health; 2019. 112 p. (In Russ).
100. Morley R, Abbott R, Fairweather-Tait S, et al. Iron fortified follow on formula from 9 to 18 months improves iron status but not development or growth: a randomised trial. Arch Dis Child. 1999; 81(3):247–252. doi: https://doi.org/10.1136/adc.81.3.247
101. Daly A, MacDonald A, Aukett A, et al. Prevention of anaemia in inner city toddlers by an iron supplemented cows’ milk formula. Arch Dis Child. 1996;75(1):9–16. doi: https://doi.org/10.1136/adc.75.1.9
102. Williams J, Wolff A, Daly A, et al. Iron supplemented formula milk related to reduction in psychomotor decline in infants from inner city areas: randomised study. BMJ. 1999;318(7185):693– 697. doi: https://doi.org/10.1136/bmj.318.7185.693
103. Walter T, Pino P, Pizarro F, et al. Prevention of iron-deficiency anemia: comparison of high- and low-iron formulas in term healthy infants after six months of life. J Pediatr. 1998;132(4):635–640. doi: https://doi.org/10.1016/s0022-3476(98)70352-x 109. Lozoff B, Castillo M, Clark KM, Smith JB. Iron-fortified vs low-iron infant formula: developmental outcome at 10 years. Arch Pediatr Adolesc Med. 2012;166(3):208–215. doi: https://doi.org/10.1001/archpediatrics.2011.197
104. Fewtrell M, Bronsky J, Campoy C, et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–132. doi: https://doi.org/10.1097/MPG.0000000000001454
105. Eichler K, Wieser S, Rüthemann I, Brügger U. Effects of micronutrient fortified milk and cereal food for infants and children: a systematic review. BMC Public Health. 2012;12:506. doi: https://doi.org/10.1186/1471-2458-12-506
106. Jonsdottir OH, Thorsdottir I, Hibberd PL, et al. Timing of the introduction of complementary foods in infancy: a randomized controlled trial. Pediatrics. 2012;130(6):1038–1045. doi: https://doi.org/10.1542/peds.2011-3838
107. Theurich MA, Fewtrell M, Baumgartner J, et al. Moving Complementary Feeding Forward: Report on a Workshop of the Federation of International Societies for Pediatric Gastroenterology, Hepatology and Nutrition (FISPGHAN) and the World Health Organization Regional Office for Europe. J Pediatr Gastroenterol Nutr. 2022;75(4):411–417. doi: https://doi.org/10.1097/MPG.0000000000003562
108. Engelmann MD, Sandstrom B, Michaelsen KF. Meat intake and iron status in late infancy: an intervention study. J Pediatr Gastroenterol Nutr. 1998;26(1):26–33. doi: https://doi.org/10.1097/00005176-199801000-00005
109. Morgan J, Taylor A, Fewtrell M. Meat consumption is positively associated with psychomotor outcome in children up to 24 months of age. J Pediatr Gastroenterol Nutr. 2004;39(5):493–498. doi: https://doi.org/10.1097/00005176-200411000-00009
110. Wilk VC, McGuire MK, Roe AJ. Early Life Beef Consumption Patterns Are Related to Cognitive Outcomes at 1-5 Years of Age: An Exploratory Study. Nutrients. 2022;14(21):4497. doi: https://doi.org/10.3390/nu14214497
111. Krebs NF, Westcott JE, Butler N, et al. Meat as a first complementary food for breastfed infants: feasibility and impact on zinc intake and status. J Pediatr Gastroenterol Nutr. 2006;42(2):207– 214. doi: https://doi.org/10.1097/01.mpg.0000189346.25172.fd
112. Yeung GS, Zlotkin SH. Efficacy of meat and iron-fortified commercial cereal to prevent iron depletion in cow milk-fed infants 6 to 12 months of age: a randomized controlled trial. Can J Public Health. 2000;91(4):263–267. doi: https://doi.org/10.1007/BF03404285
113. Hallberg L, Hoppe M, Andersson M, Hulthén L. The role of meat to improve the critical iron balance during weaning. Pediatrics. 2003;111(4 Pt 1):864–870. doi: https://doi.org/10.1542/ peds.111.4.864
114. da Silva Lopes K, Yamaji N, Rahman MO, et al. Nutritionspecific interventions for preventing and controlling anaemia throughout the life cycle: an overview of systematic reviews. Cochrane Database Syst Rev. 2021;9(9):CD013092. doi: https://doi.org/10.1002/14651858.CD013092.pub2
115. Troesch B, Egli I, Zeder C, et al. Optimization of a phytasecontaining micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am J Clin Nutr. 2009;89(2):539–544. doi: https://doi.org/10.3945/ajcn.2008.27026
116. Hackl LS, Abizari AD, Speich C, et al. Micronutrient-fortified rice can be a significant source of dietary bioavailable iron in schoolchildren from rural Ghana. Sci Adv. 2019;5:eaau0790. doi: https://doi.org/10.1126/sciadv.aau0790
117. Caroli M, Vania A, Tomaselli MA, et al. Breastfed and Formula- Fed Infants: Need of a Different Complementary Feeding Model? Nutrients. 2021;13(11):3756. doi: https://doi.org/10.3390/nu13113756
118. Tang M, Sheng XY, Krebs NF, Hambidge KM. Meat as complementary food for older breastfed infants and toddlers: a randomized, controlled trial in rural China. Food Nutr Bull. 2014;35(4 Suppl):S188– S192. doi: https://doi.org/10.1177/15648265140354S304
119. Chen W, Zheng D, Yang C. The Emerging Roles of Ferroptosis in Neonatal Diseases. J Inflamm Res. 2023;16:2661–2674. doi: https://doi.org/10.2147/JIR.S414316
120. Lucotte G, Dieterlen F. A European allele map of the C282Y mutation of hemochromatosis: Celtic versus Viking origin of the mutation? Blood Cells Mol Dis. 2003;31(2):262–267. doi: https://doi.org/10.1016/s1079-9796(03)00133-5
121. Lönnerdal B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am J Clin Nutr. 2017;106(Suppl 6):1681S–1687S. doi: https://doi.org/10.3945/ajcn.117.156042
122. Soofi S, Cousens S, Iqbal SP, et al. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet. 2013;382(9886):29–40. doi: https://doi.org/10.1016/S0140-6736(13)60437-7
Review
For citations:
Belyaeva I.A., Bombardirova E.P., Turti T.V. Latent Iron Deficiency in Tender-Age Infants: Modern Preventive Measures. Pediatric pharmacology. 2023;20(5):478-489. (In Russ.) https://doi.org/10.15690/pf.v20i5.2634