Correlation Between Stress, Immunity and Intestinal Microbiota
https://doi.org/10.15690/pf.v17i1.2078
Abstract
Recent studies have shown the correlation between stress, immunity and intestinal microbiota. Chronic stress is associated with high production of inflammation mediators and risk of infection development, chronic systemic inflammation and inflammatory diseases development, as well as depressive disorders. Intestinal microbiota produces a wide range of compounds important for the organism: all major neurotransmitters, including serotonin, cytokines, tryptophan and short-chain fatty acids. Serotonin deficiency is considered as significant cause factor for development of anxiety, aggression, affective disorders and stress. Tryptophan is the serotonin precursor. Tryptophan is produced by intestinal microbiota or derived from food can be metabolized into kinurenine. Proinflammatory cytokines activate hypothalamus-pituitary-adrenal axis that increases of the level of circulating kinurenine and reduces the serotonin synthesis. Besides that, more kinurenine enters the brain during the inflammation process, and the neurotoxic pathway of kinurenine metabolism overwhelm the neuroprotective one. The less various microbiota microbiota is associated with increased response of the hypothalamus-pituitary-adrenal system, increase of pro-inflammatory cytokines, reduction of stress resistance, and depression. Enrichment of the diet with prebiotic components increases the diversity of the intestinal microbiota. Dietary interventions for intestinal microbiome also include probiotics promoting increased body resistance and cause less exposure to depression.
About the Authors
Оxana N. KomarovaRussian Federation
Moscow
Anatoly I. Khavkin
Russian Federation
Moscow
References
1. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014;58(2-3):193-210. doi: 10.1007/s12026-014-8517-0.
2. Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav Immun. 2017;64:208-219. doi: 10.1016/j.bbi.2017.01.011.
3. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98(1):477-504. doi: 10.1152/physrev.00039.2016.
4. Cohen S, Gianaros PJ, Manuck SB. A stage model of stress and disease. Perspect Psychol Sci. 2016;11(4):456-463. doi: 10.1177/1745691616646305.
5. Hodes GE, Pfau ML, Leboeuf M, et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci U S A. 2014;111:16136-16141. doi: 10.1073/pnas.1415191111.
6. Miller GE, Cohen S, Ritchey AK. Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002;21(6):531-541. doi: 10.1037//0278-6133.21.6.531.
7. Dantzer R, Capuron L, eds. Inflammation-associated depression: evidence, mechanisms ‘and implications. Springer, Cham; 2017. 356 р. doi: 10.1007/978-3-319-51152-8.
8. Dantzer R, O'Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46-57. doi: 10.1038/nrn2297.
9. Michopoulos V, Powers A, Gillespie CF, et al. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254-270. doi: 10.1038/npp.2016.146.
10. Bilbo SD, Block CL, Bolton JL, et al. Beyond infection — maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp. Neurol. 2018;299(Pt A):241-251. doi: 10.1016/j.expneurol.2017.07.002.
11. Patterson E, Cryan JF, Fitzgerald GF, et al. Gut microbiota, the pharmabiotics they produce and host health. Proc Nutr Soc. 2014;73(4):477-489. doi: 10.1017/S0029665114001426.
12. Luczynski P, Neufeld KA, Oriach CS, et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19(8). doi: 10.1093/ijnp/pyw020.
13. Bravo JA, Forsythe P Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050-16055. doi: 10.1073/pnas.1102999108.
14. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489-503 doi: 10.1113/JP273106.
15. Holsche HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172-184. doi: 10.1080/19490976.2017.1290756.
16. Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164-174. doi: 10.1016/j.jpsychires.2008.03.009.
17. Mezrich JD, Fechner JH, Zhang X, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190-3198. doi: 10.4049/jimmunol.0903670.
18. Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. Curr Top Behav Neurosci. 2017;31:117-138. doi: 10.1007/7854_2016_6.
19. Glynn LM, Davis EP, Schetter CD, et al. Postnatal maternal cortisol levels predict temperament in healthy breastfed infants. Early Hum Dev. 2007;83(10):675-681. doi: 10.1016/j.earlhum-dev.2007.01.003.
20. Ruddick JP, Evans AK, Nutt DJ, et al. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med. 2006;8(20):1-27. doi: 10.1017/S1462399406000068.
21. Floc'h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41(5):1195-1205. doi: 10.1007/s00726-010-0752-7.
22. Honorio-Fran a AC, Castro Pernet Hara C, Silva Ormonde JV, et al. Human colostrum melatonin exhibits a day-night variation and modulates the activity of colostral phagocytes. J Appl Biomed. 2013;11(3):153-162. doi: 10.2478/v10136-012-0039-2.
23. O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65(3):263-267. doi: 10.1016/j.biopsych.2008.06.026.
24. Marin IA, Goertz JE, Ren T, et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep. 2017;7:43859. doi: 10.1038/srep43859.
25. Jiang H, Ling Z, Zhang Y et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186-194. doi: 10.1016/j.bbi.2015.03.016.
26. Kelly JR, Borre Y, O' Brien C, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109-118. doi: 10.1016/j.jpsychires.2016.07.019.
27. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10(-/-) mice. Nature. 2012;487(7405):104-108. doi: 10.1038/nature11225.
28. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691-14696. doi: 10.1073/pnas.1005963107.
29. Carlos S, de la Fuente-Arrillaga C, Bes-Rastrollo M, et al. Mediterranean diet and health outcomes in the SUN cohort. Nutrients. 2018;10(4):E439. doi: 10.3390/nu10040439.
30. Jacka FN, O'Neil A, Opie R, et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES' trial). BMC Med. 2017;15(1):23. doi: 10.1186/s12916-017-0791-y.
31. Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2017;67(4):625-633. doi: 10.1136/gutjnl-2016-313627.
32. Zhang Z, Hinrichs DJ, Lu H, et al. After interleukin-12p40, are interleukin-23 and interleukin-17 the next therapeutic targets for inflammatory bowel disease? Int Immunopharmacol. 2007;7(4):409-416. doi: 10.1016/j.intimp.2006.09.024.
33. Smits HH, Engering A, van der Kleij D, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol. 2005;115(6):1260-1267. doi: 10.1016/j.jaci.2005.03.036.
34. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745-4767. doi: 10.3390/ijerph110504745.
35. Lopez P Gueimonde M, Margolles A, Suarez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol. 2010;138(1-2):157-165. doi: 10.1016/j.ijfoodmicro.2009.12.023.
36. Shulzhenko N, Morgun A, Hsiao W, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17(12):1585-1593. doi: 10.1038/nm.2505.
37. Havkin AI, Fedotova OB, Volynec GV, et al. The results of a prospective comparative open-label randomised study of the effectiveness of a probioticand prebiotic-fortified yogurt in small children after an acute respiratory infection. Problems of pediatric nutritiology. 2019;17(1):29-37. (In Russ). doi: 10.20953/1727-5784-2019-1-29-37.
38. Sarkar A, Lehto SM, Harty S, et al. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39(11):763-781. doi: 10.1016/j.tins.2016.09.002.
39. Havkin AI, Komarova ON. Role of prebiotics in children's diet. Current pediatrics. 2014;13(1):96-101. (In Russ). doi: 10.15690/vsp.v13i1.917.
40. Havkin AI. Mikroflora pishhevaritel’nogo trakta. Moscow: Fond sotsial'noi pediatrii; 2006. 416 р. (In Russ).
Review
For citations:
Komarova О.N., Khavkin A.I. Correlation Between Stress, Immunity and Intestinal Microbiota. Pediatric pharmacology. 2020;17(1):18-24. (In Russ.) https://doi.org/10.15690/pf.v17i1.2078