Н.Д. Рагимова¹, Г.М. Гурбанова²

- ¹ Научно-исследовательский институт педиатрии имени К.Я. Фараджевой, Баку, Азербайджанская Республика
- ² Азербайджанский государственный институт усовершенствования врачей имени А. Алиева, Баку, Азербайджанская Республика

Нейроиммунологические нарушения у недоношенных детей с перинатальными инфекциями

Контактная информация:

Рагимова Наиля Джалил кызы, кандидат медицинских наук, доцент, заместитель директора по научной работе **Адрес**: Az 1065, Баку, ул. Басти Багирова, д. 15, **e-mail**: rahimova_nailya@mail.ru **Статья поступила**: 27.11.2017 г., принята к печати: 12.02.2017 г.

Инфекционные болезни у новорожденных, в большинстве случаев представленные внутриутробными инфекциями, во многом определяют показатели заболеваемости и смертности детей в неонатальном периоде. **Цель исследования** — изучить неврологический статус с учетом нейроиммунологических показателей (нейронспецифической енолазы, NSE; интерлейкина 1β, IL1β; интерлейкина 6, IL6) в сыворотке крови недоношенных детей с перинатальными инфекциями. **Методы**. Проведено комплексное клинико-лабораторное, инструментальное обследование 433 недоношенных новорожденных с перинатальными инфекциями со сроком гестации 27–37 нед. Определение уровней NSE, IL1β, IL6 выполнялось стандартным методом иммуноферментного анализа. **Результаты**. Гипоксически-ишемическое, гипоксически-геморрагическое, инфекционное поражение центральной нервной системы чаще встречалось у недоношенных со смешанной инфекцией и сепсисом. Высокие уровни NSE, IL6, IL1β в сыворотке крови обследованных недоношенных детей отражают сочетанный, более глубокий характер повреждения центральной нервной системы. **Заключение**. Значимая диагностическая ценность нейроиммунологических показателей (NSE, IL6, IL1β) в сыворотке крови недоношенных детей с перинатальными инфекциями позволяет использовать их в качестве маркеров тяжести поражение центральной нервной системы.

Ключевые слова: перинатальные инфекции, недоношенные дети, нейронспецифическая енолаза, цитокины.

(**Для цитирования**: Рагимова Н.Д., Гурбанова Г.М. Нейроиммунологические нарушения у недоношенных детей с перинатальными инфекциями. *Педиатрическая фармакология*. 2018; 15 (1): 95–100. doi: 10.15690/pf.v15i1.1849)

АКТУАЛЬНОСТЬ

Перинатальная инфекционная патология — одна из актуальных и сложных проблем современной неонатологии и ведущая причина заболеваемости и смертности новорожденных [1–4]. Внутриутробные инфекции

являются причиной смерти недоношенных новорожденных в 68,1% случаев, доношенных — в 49,7% [5].

Несмотря на значительное улучшение понимания механизмов развития данной патологии и достижения в ее лечении у недоношенных детей, перинатальные

Nailya J. Rahimova¹, Gyul'syum M. Gurbanova²

- ¹ Scientific Research Institute of Pediatrics named after K.Y. Farajova, Baku, Azerbaijan
- ² Department of nervous diseases of Azerbaijan State Advanced Training Institute for Doctors named after A. Aliyev, Baku, Azerbaijan

Neuroimmunological Disturbance Features in Premature Infants with Perinatal Infections

Infectious diseases in newborns are commonly intrauterine infections which affect greatly on the morbidity and mortality rates in neonates. **Background**: The purpose of this study was to analyse the neurological status, taking into account the neuroimmunological indicators (neuron-specific enolase (NSE), interleukin-1 β (IL1 β), Interleukin-6 (IL6) in the serum of neonates with perinatal infections. **Metods**: We conducted a complex clinical, laboratory, and instrumental examination of 433 infants with perinatal infections with a gestation period of 27–37 weeks. Determination of the level of NSE, IL1 β , IL6 was performed with the standard method of the immune-enzyme analysis. **Results**. Hypoxic ischemic, hemorrhagic, infectious lesion of the central nervous system (CNS) were more common in newborns with mixed infection and sepsis. High levels of NSE, IL1 β in the serum of the examined newborns reflect a combined, deeper character of the CNS damage. **Conclusion**: Significant diagnostic value of neuroimmunological indicators in the blood serum of newborns with perinatal infections makes it possible to use them as a markers for assessing the severity of the CNS lesions.

Key words: perinatal infections, premature infants, neuron-specific enolase, cytokines.

(For citation: Rahimova NJ, Gurbanova GM. Neuroimmunological Disturbance Features in Premature Infants with Perinatal Infections. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2018; 15 (1): 95–100. doi: 10.15690/pf.v15i1.1849)

95

инфекции продолжают оставаться одной из основных причин тяжелого неврологического повреждения в постнатальном периоде [6, 7]. Объективная сложность обследования новорожденных определяет необходимость широкого применения неинвазивных методов, в частности ультразвукового сканирования головного мозга, позволяющего в короткие сроки выявить и оценить структурные изменения, связанные в том числе с инфекционной патологией центральной нервной системы (ЦНС). Существенное значение имеет лабораторная диагностика, включающая определение нейронспецифических белков, в частности нейронспецифической енолазы (neuron specific enolase, NSE), которая рассматривается наиболее специфичным маркером повреждения нейронов и служит индикатором для выявления степени выраженности их повреждений, а также нарушений общей целостности гематоэнцефалического барьера [8]. Кроме того, в настоящее время перспективным для диагностики и прогнозирования течения внутриутробных инфекций и неонатального сепсиса представляется определение уровня противоспалительных цитокинов, а следовательно, возможность использования этих показателей в качестве информативных критериев оценки тяжести поражения ЦНС [9-14].

Учитывая важную патогенетическую роль нейровоспаления в церебральных поражениях, определение уровня провоспалительных цитокинов позволяет использовать их в качестве информативных критериев оценки тяжести поражения ЦНС [15, 16]. Согласно результатам проведенных исследований, высокие уровни провоспалительных цитокинов при гипоксически-ишемическом поражении ЦНС отражают тяжесть повреждения головного мозга у недоношенных новорожденных, являясь дополнительным повреждающим фактором для нейронов в постнеонатальном периоде [7, 16–18].

Таким образом, исследование динамики нейронспецифических белков и иммуноцитокинов, определение их диагностического и прогностического значения при перинатальных поражениях ЦНС недоношенных новорожденных с перинатальными инфекциями является перспективным направлением.

Цель исследования — изучить неврологический статус недоношенных новорожденных с перинатальными инфекциями с учетом нейроиммунологических показателей (нейронспецифической енолазы, интерлейкина 1β, интерлейкина 6).

МАТЕРИАЛЫ И МЕТОДЫ

Проведено клинико-лабораторное обследование 433 недоношенных новорожденных детей с перинатальными инфекциями со сроком гестации от 27 нед до 36 нед 6 дней, поступивших в отделения патологии недоношенных новорожденных, анестезиологии, реанимации и интенсивной терапии Научно-исследовательского института педиатрии имени К.Я. Фараджевой в период 2012-2017 гг. Масса тела новорожденных варьировала от 800 до 2500 г и составляла в среднем 2035,9±27,8 г с преобладанием детей с массой тела более 1500 г при рождении. Среди детей, включенных в исследование, мальчики составили 56,8% (246), девочки — 43,2% (187). Гестационный возраст колебался от 27 нед до 36 нед 6 дней и в среднем составил 33,9±0,1 нед. В исследуемой группе преобладали дети с гестационным возрастом более 32 нед на момент рождения. Так, гестационный возраст от 35 нед до 36 нед 6 дней был у 222 (51,3%), 32-34 нед — у 127 (29,3%), 29-31 нед — у 67 (15,5%), 27-28 нед — у 17 (3,9%) детей. Возрастной диапазон

обследованных беременных составил 17-43 (в среднем $22,6\pm2,0$) года. Первородящих было 277 (64,0%), повторнородящих — 156 (36,0%).

В группу сравнения вошли 33 условно здоровых недоношенных ребенка без признаков внутриутробного инфицирования. Гестационный возраст детей на момент рождения в этой группе был от 30 нед до 36 нед 6 дней (в среднем $34,8\pm0,2$ нед), что сопоставимо с аналогичным показателем в основной группе исследования. Масса тела недоношенных детей при рождении колебалась от 2000 до 3170 г (в среднем $2259,1\pm38,7$ г), что незначительно превышало аналогичный показатель у детей основной группы. В группе условно здоровых детей было 5 (15,2%) мальчиков и 28 (84,8%) девочек.

В рамках исследования был проведен анализ анамнестических данных, антенатальных, интранатальных факторов риска, структуры этиологически значимых возбудителей перинатальной инфекции у наблюдавшихся детей. Для изучения влияния различных факторов со стороны матери, внутриутробно развивающегося ребенка и новорожденного на развитие перинатальных инфекций проводился односторонний вариационный анализ с помощью непараметрического критерия Краскела—Уоллиса по выявлению частоты встречаемости этих факторов в изучаемых группах. Различия между сравниваемыми величинами считали статистически достоверными при уровне значимости *p*<0,05.

Всем детям было проведено динамическое клиническое наблюдение, базисное лабораторное обследование. Биохимическое, бактериологическое исследование крови, мочи, кала проводилось строго по показаниям и оформлялось решением консилиума специалистов неонатального профиля. Верификация этиологического диагноза выполнялась методом иммуноферментного анализа для обнаружения специфических антител (иммуноглобулин, Ig) классов M, G к цитомегаловирусной инфекции (ЦМВИ), вирусу простого герпеса 1-го и 2-го типов с использованием стандартных наборов реактивов (NovaLisa, Германия) на анализаторе Sirio (Италия). Для уточнения этиологии врожденной инфекции проводилось исследование биологических сред ребенка (кровь, слюна, моча) методом полимеразной цепной реакции.

В зависимости от результатов комплексного обследования и с учетом этиологии заболевания новорожденные с инфекциями были распределены на 3 группы:

- І группа: 220 новорожденных с внутриутробной цитомегаловирусной инфекцией;
- II группа: 118 новорожденных со смешанной инфекцией, из них у 85 диагностирована ЦМВИ и инфекция, вызванная вирусом простого герпеса 2-го типа, у 8 ЦМВИ и токсоплазмоз, у 25 ЦМВИ и бактериальная инфекция:
- III группа: 95 недоношенных новорожденных детей с бактериальной инфекцией, из них у 50 методом бактериологического исследования крови выявлен Staphylococcus aureus, у 18 Streptococcus spp., у 12 Klebsiella spp., у 15 Escherichia coli. Все виды возбудителей присутствовали в концентрациях 10⁵–10⁷ КОЕ/мл (колониеобразующих единиц на 1 мл).

Определение NSE, интерлейкинов (Interleukin, IL) 1β , 6 выполняли стандартным методом твердофазного («сэндвич»-вариант) иммуноферментного анализа с использованием диагностических тест-систем производства «Вектор-Бест» (Новосибирск) на анализаторе Elisys Uno (Human, Германия).

Статистический анализ

Полученные цифровые данные подверглись статистической обработке методами медицинской статистики с учетом современных требований. Применены методы вариационного (Краскела–Уоллиса, KU), корреляционного (Спирмен, ρ), дискриминантного (Cut of Point), дисперсионного (ANOVA) и ROC-анализа. Вычисления проводились при помощи электронной таблицы Excel 2010 и статистического пакета SPSS-20.

РЕЗУЛЬТАТЫ

При изучении состояния здоровья беременных и проведении анализа особенностей соматического анамнеза у матерей недоношенных детей с перинатальными инфекциями обнаружена высокая частота экстрагенитальной патологии (у 253/433; 58,4%), достоверно отличающаяся от аналогичного показателя в группе сравнения $(\chi^2=19,3, F=15,2; p<0,001)$. Анализ гинекологического анамнеза матерей недоношенных новорожденных с перинатальными инфекциями показал, что у большинства женщин (у 205; 47,3%) имелись гинекологические заболевания (χ^2 =23,2, F=18,9; p<0,001). У матерей основной группы с отягощенным акушерским анамнезом статистически достоверно чаще регистрировались выкидыши (χ^2 =19,2, p<0,001; F=1,46, p=0,225) по сравнению с медицинскими абортами (χ^2 =2,3; p=0,511), антенатальная гибель плода (χ^2 =4,6; p=0,198). У матерей инфицированных детей из факторов, осложнивших настоящую беременность, достоверно чаще по сравнению с женщинами, родившими здоровых детей, встречались гестоз второй половины (у 151; 34,9%) (χ^2 =39,4, p<0,001; F=3,71, p=0,012), угроза прерывания беременности (у 104; 24,0%) (χ^2 =46,7, p<0,001; F=1,4, p=0,241), анемия (y 301; 69,5%) (χ^2 =50,9, p<0,001; F=1,01, p=0,36).

Статистически значимых взаимосвязей между внутриутробным инфицированием плода и патологическим течением родов, в том числе оперативным родоразрешением, не выявлено.

Все пациенты, включенные в исследование, наблюдались педиатром и неврологом. Ведущим неврологическим синдромом у недоношенных детей был синдром угнете-

ния, который с одинаковой частотой встречался во всех трех группах инфицированных новорожденных, а также в группе сравнения. Важно отметить, что при анализе основных неврологических синдромов в неонатальном периоде установлено, что судорожный синдром с одинаковой частотой встречался в группах недоношенных со смешанным инфицированием и с бактериальной инфекцией — у 32/118 (27,1%) и 24/95 (25,3%) детей соответственно. Преобладали мультифокальные варианты течения заболевания с тонико-клоническими судорогами. В группе инфицированных ЦМВИ судорожный синдром встречался в два раза реже — у 28/220 (12,7%) детей.

В нашем исследовании было определено, что чаще гипертензионный синдром встречался у новорожденных со смешанной инфекцией (32/118; 27,1%).

Синдром вегетативно-висцеральных нарушений диагностирован во всех трех группах инфицированных недоношенных детей, но чаще в группе пациентов с бактериальной инфекцией (23/95; 24,2%).

Учитывая тяжесть состояния недоношенных новорожденных с перинатальными инфекциями как при рождении, так и в течение всего неонатального периода, а также необходимость дифференцированного подхода к пациенту в зависимости от степени поражения ЦНС, детям основной группы проведено дополнительное лабораторно-инструментальное обследование.

Анализ нейросонографических данных показал, что в группе недоношенных детей с ЦМВИ и бактериальной инфекцией частота кровоизлияний в мозг была более высокой. Так, было выявлено, что у недоношенных детей на фоне внутриутробных инфекций имеет место сочетанное поражение ЦНС в виде развития внутрижелудочковых кровоизлияний, что обусловлено не только влиянием гипоксии, но и действием токсинов на сосудистую стенку, приводящим к повышению ее порозности в анатомически «слабых» местах (перивентрикулярные зоны) с нарушением целостности сосудов и развитием перивентрикулярных кровоизлияний. Сравнительная оценка результатов нейросонографии у недоношенных детей с перинатальным инфицированием различной этиологии представлена в табл. 1.

Таблица 1. Эхографические признаки церебральной патологии у недоношенных новорожденных с перинатальным инфицированием

Table 1. Echographic signs of cerebral pathology in premature newborns with perinatal infection

Признаки	I группа n=220 (%)	II группа n=118 (%)	III группа n=95 (%)	χ ² ρ _{ku}	F p
I. Гемодинамические изменения ишемического характера:	133*** (52,0)	77*** (65,3)	57* (60,0)	$\chi^2 = 48.4$ < 0.001	F=17,9 <0,001
• Нарушение мозгового кровообращения	89 (40,5)	36 (37,1)	29 (30,5)	-	-
• Отек головного мозга	62 (28,2)	13 (13,4)	15 (15,8)	-	-
• Церебральная ишемия II—III степени	12 (5,5)	1 (1,0)	5 (5,3)	-	-
• Перивентрикулярная лейкомаляция	15 (6,8)	2 (2,1)	13 (13,7)	-	-
II. Гемодинамические изменения геморрагического характера:	58** (26,4)	57*** (48,3)	31** (32,6)	χ^2 =30,5 <0,001	F=10,8 <0,001
• ПВК I степени	36 (16,4)	34 (28,8)	21 (22,1)	-	-
• ПВК II степени	16 (7,3)	20 (19,3)	8 (8,4)	-	-
• ПВК III степени	6 (2,8)	3 (2,5)	2 (2,1)	-	-
III. Гемодинамические изменения инфекционного характера:	34 (15,5)	20 (16,9)	18 (18,9)	χ ² =7,1 0,069	F=2,4 0,068
• Вентрикулит	33** (15,0)	16 (13,6)	16 (16,8)	-	-
• Менингит	2 (0,9)	4 (3,4)	3 (3,2)	-	-
• Кальцификаты	9 (4,1)	14 (11,9)	-	-	-

Таблица 1. Эхографические признаки церебральной патологии у недоношенных новорожденных с перинатальным инфицированием (Окончание)

Table 1. Echographic signs of cerebral pathology in premature newborns with perinatal infection (Continuation)

Признаки	I группа n=220 (%)	II группа n=118 (%)	III группа n=95 (%)	χ² p _{ku}	F p
IV. Пороки развития головного мозга:	2 (0,9)	11 (0,8)	2 (2,1)	-	-
• Перивентрикулярные кисты	16 (7,3)	21 (17,8)	1 (1,7)	-	-
• Минерализационная васкулопатия	12 (5,5)	16 (13,6)	2 (2,1)	-	-
V. Вентрикуломегалия	45 (20,5)	30 (25,4)	22 (23,4)	-	-

Примечание. Статистическая достоверность разницы (p) с показателями группы сравнения: * — <0,05, ** — <0,01, *** — <0,001; χ^2 и $p_{\rm ku}$ — результаты одностороннего вариационного анализа по критерию Краскела–Уоллиса; F и p — результаты однофакторного дисперсионного анализа по критерию Фишера. ПВК — перивентрикулярные кровоизлияния.

Note. Statistical significance of the difference (p) with the indices of the comparison group: * - <0,05, ** - <0,01, *** - <0,001; χ^2 μ $p_{\rm ku}$ - results of a one-way analysis of variance by the Kruskel-Wallis criterion; F μ p - results of a single-factor analysis of variance by the Fisher criterion. ΠBK - periventricular hemorrhage.

Гемодинамические изменения инфекционного характера развивались у недоношенных с перинатальными инфекциями во всех трех группах примерно с одинаковой частотой: у 34/220 (15,5%) детей с ЦМВИ; у 20/118 (17,0%) — со смешанной инфекцией; у 18/95 (19,0%) — с бактериальной инфекцией. Анализ результатов нейросонографии показал, что вентрикулит чаще встречался у недоношенных с ЦМВИ и бактериальным инфицированием, а менингит — у детей со смешанной и бактериальной инфекциями.

Вентрикуломегалия различной степени тяжести диагностирована у инфицированных недоношенных всех трех групп почти с одинаковой частотой, но чаще отмечалась у пациентов со смешанной (30/118; 25,4%) и бактериальной (22/95; 23,2%) инфекцией, что свидетельствует о тяжелых патологических процессах, сопровождающихся внутричерепными кровоизлияниями в головном мозге у данного контингента больных.

Такие патологические нейросонографические признаки, как кальцификаты, кисты и минерализационная васкулопатия, у недоношенных с перинатальными инфекциями встречались достаточно редко. Так, кальцификаты у инфицированных ЦМВ отмечались в 7,3% случаев, при смешанном инфицировании — в 4,1%. Минерализационная васкулопатия с большей частотой встречалась в группе недоношенных со смешанной инфекцией.

При анализе полученных данных при перинатальном инфицировании пороки развития головного мозга выявлены у 14 недоношенных детей: у 2 детей с ЦМВИ, у 10 — со смешанной, у 2 — с бактериальной инфекцией.

Таким образом, показано, что гипоксически-ишемическое и гипоксически-геморрагическое инфекционное поражение центральной нервной системы чаще встречалось у недоношенных детей со смешанной и бактериальной инфекцией.

Концентрацию NSE в сыворотке крови у обследуемых детей определяли на 5-7-е сут жизни в остром периоде заболевания при поступлении в стационар и в динамике на 25-28-е сут жизни (завершение неонатального периода). В сыворотке крови недоношенных детей без признаков перинатального инфицирования уровень NSE составил $6,0\pm0,8$ нг/л, в то время как у недоношенных детей с ЦМВИ он был выше в 3,4 раза и составил в среднем $20,3\pm1,3$ нг/л. При сопоставлении уровней NSE у недоношенных с микст-инфекцией в раннем и позднем неонатальных периодах показано различие в 1,4 раза ($29,6\pm2,5$ против $20,7\pm1,8$ нг/л соответственно). У недоношенных с бактериальной инфекцией отмечалась повы-

шенная продукция NSE по сравнению с детьми группы контроля в 3,4 раза (p<0,001). В целом в раннем неонатальном возрасте уровень NSE в сыворотке крови детей с перинатальным инфицированием колебался от 7,9 до 31 нг/л, в среднем составив 20,3 \pm 1,9 нг/л. При динамическом наблюдении этот показатель оставался высоким и к 28-му дню жизни у инфицированных недоношенных составлял в среднем 18,0 \pm 1,5 нг/л, не достигая нормативных значений (табл. 2).

Изучение особенностей цитокинового статуса у новорожденных с перинатальными инфекциями с применением критерия Краскела–Уоллиса выявило общее статистически достоверное повышение уровня провоспалительных цитокинов по сравнению с показателями группы сравнения: IL6 — в 5,4 раза (χ^2 =33,9; ρ <0,001), IL1 β — в 5,5 раза (χ^2 =27,0; ρ <0,001),

Наиболее высокий уровень IL1 β отмечался у недоношенных с ЦМВИ и бактериальной инфекцией, IL6 — у недоношенных со смешанной и бактериальной инфекцией.

Анализируя значения NSE у недоношенных, были вычислены площадь ROC-кривой, стандартная ошибка, а также определены 95% верхние и нижние границы площади (Confidence interval, CI) и асимптотические значения (достоверность результата): согласно значениям NSE, S=0,971±0,022 (95% CI 0,928–1,000; p<0,001), IL1 β у недоношенных — S=0,990±0,012 (95% CI 0,966–1,00; p<0,001), IL6 — S=1,000±0,000 (95% CI 1,000–1,000; p<0,001).

Для прогностической ценности NSE на основании координат ROC-кривой определены «точки отсечения» (Cut-off Point), когда сумма значений чувствительности и специфичности достигает максимального уровня. У недоношенных оптимальной «точкой отсечения» для NSE является величина 11 пг/мл: в этой точке чувствительность равна $85,3\pm6,1\%$, специфичность — $90,0\pm9,5\%$. Оптимальной «точкой отсечения» для IL1 β является величина 3,5 пг/мл: в этой точке чувствительность равна 97,1%, специфичность — 90,0%, для IL6 \geq 4 — 100 и 90,0% соответственно.

Общий диагностический вес теста NSE составил 86,4%, IL1 β — 95,5%, IL6 — 97,7%, что свидетельствует об их хорошей диагностической ценности.

Далее мы применили однофакторный дисперсионный анализ ANOVA (Analysis of variance) и оценили вес фактора (ВФ) при NSE \geq 11 (ВФ=84,8; 95% CI 86,3-83,3; p<0,001), IL1 β >3,5 (ВФ=313,1; 95% CI 333,8-292,4; p<0,05), IL6>4,0 (ВФ=695,5%; 95% CI 753,2-637,7; p<0,001).

Таблица 2. Нейроиммунологические показатели в сыворотке крови недоношенных новорожденных с перинатальными инфекциами

Table 2. Neuroimmunological indices in the serum of premature neonates with perinatal infections

Показатель,	Группа сравнения	I группа	II группа	III группа	χ²	F
пг/мл	n=12	n=14	n=9	n=21	P _{ku}	p
IL1β	2,8±0,2	14,2±2,5	9,5±1,9	21,8±3,4	χ ² =27,0	F=10,1
	(2,4-3,2)	(8,8-19,5)	(5-13,9)	(14,2-29,3)	<0,001	<0,001
IL6	3,4±0,1	12,7±1,6	16,1±2,0	28,2±2,2	χ ² =34	F=35,6
	(3,2-3,7)	(9,3-16,1)	(11,6-20,7)	(23,4-33,1)	<0,001	<0,001
NSE	6,0±0,8	20,3±1,3	29,6±2,5	20,3±1,9	χ ² =20,3	F=9,1
5–7-e cyt	(4-12)	(7-29)	(14-41)	(7,9-31)	<0,001	<0,001
NSE	14,5±1,1	14,5±1,1	20,7±1,8	18,0±1,5	χ ² =0,9	F=0,53
25-28-е сут	(8-21,2)	(8-21,2)	(12,8-32)	(9,9-23,5)	<0,001	0,006

Примечание. Статистическая достоверность разницы (*p*) с показателями группы сравнения: * — <0,05, ** — <0,01, *** — <0,001 (в скобках указан 95% доверительный интервал, его нижняя и верхняя границы); χ² и *p*_{ки} — результаты одностороннего вариационного анализа по критерию Краскела–Уоллиса; F и *p* — результаты однофакторного дисперсионного анализа по критерию Фишера.

Note. Statistical significance of the difference (p) with the indices of the comparison group: * - <0,05, ** - <0,01, *** - <0,001 (95% confidence interval in parentheses, its lower and upper thresholds); χ^2 u p_{ku} - results of a one-way analysis of variance by the Kruskel-Wallis criterion; F u p - results of a single-factor analysis of variance by the Fisher criterion.

У недоношенных с перинатальными инфекциями с помощью корреляционного анализа ho-Спирмена $(\rho_{\rm S})$ выявлен ряд связей между поражением ЦНС, NSE и показателями, характеризующими тяжесть заболевания. Содержание NSE находилось в прямой средней корреляции с анемией недоношенных, проявляющееся снижением уровней гемоглобина ($\rho_{\rm S}$ =0,508; p=0,001) и эритроцитов ($ho_{
m S}$ =0,355; ho=0,27). Ўровень NSE зависит от гиперпродукции IL1 β (ρ_S =0,584; p<0,001) и IL6 $(\rho_{\rm S} = 0,450; \; p = 0,001)$. Корреляционный анализ выявил прямую среднюю связь с гипоксическим поражением ЦНС ($\rho_{\rm S}$ =0,501; p<0,001) и слабую связь с инфекционным поражением ЦНС (ρ_S =0,353; p=0,019). Рождение недоношенных с перинатальным поражением ЦНС было связано с отягощенным антенатальным анамнезом: гинекологическими заболеваниями ($ho_{
m S}$ =0,101; ho=0,30), анемией беременных ($\rho_{\rm S}$ =0,116; p=0,030), экстрагенитальной патологией (ρ_S =0,13; p=0,005). Гипоксическое поражение ЦНС также находилось в обратно пропорциональной зависимости от антропометрических параметров при рождении: дети имели низкую массу тела ($ho_{
m S}$ =-0,098; p=0,035), низкую оценку по шкале APGAR на 1-й мин $(\rho_{\rm S}$ =-0,485; p<0,001) и на 5-й мин $(\rho_{\rm S}$ =- 0,440; p<0,001), низкие уровни гемоглобина ($\rho_{\rm S}$ =-0,174; p<0,001) и эритроцитов ($\rho_{\rm S}$ =-0,156; p<0,001). Прямая связь выявлена между поражением ЦНС и повышением уровней билирубина ($ho_{
m S}$ =0,256; p<0,001), IL1eta ($ho_{
m S}$ =0,579; p<0,001), IL6 $(\rho_s = 0.547; p = 0.003).$

ОБСУЖДЕНИЕ

В нашем исследовании определены нейроиммунологические критерии, позволяющие спрогнозировать и оценить степень тяжести поражения ЦНС у недоношенных детей с перинатальными инфекциями.

Анализ проявления перинатальных инфекций показал, что у новорожденных со сроком гестации 27–36 нед 6 дней гипоксически-ишемическое поражение ЦНС чаще встречается в группах детей с ЦМВИ и со смешанной

инфекцией, гипоксически-геморрагическое и инфекционное поражение ЦНС — в группах детей со смешанной и бактериальной инфекциями. По-видимому, повышенное содержание NSE, IL1β, IL6 в сыворотке крови у недоношенных детей со смешанной инфекцией отражает сочетанный, более глубокий характер повреждения (гипоксия, интоксикация, воспаление). Выявленная корреляция между показателями NSE и провоспалительными цитокинами (IL1β, IL6) свидетельствует об острой системной реакции организма в ответ на инфекционное воздействие на фоне тяжелого поражения ЦНС и подтверждает тесную взаимосвязь нервной и иммунной систем. Высокий общий диагностический вес теста NSE, IL1β, IL6 у недоношенных детей с внутриутробным инфицированием позволяет эффективно оценить степень тяжести поражения ЦНС.

ЗАКЛЮЧЕНИЕ

Для диагностики церебральных повреждений при перинатальных инфекциях у недоношенных детей целесообразно использовать комплексный подход, включающий клинические, нейросонографические, допплерографические исследования, а также определение содержания NSE, IL1β, IL6 в сыворотке крови. Таким образом, значимая диагностическая ценность нейроиммунологических показателей у недоношенных детей с внутриутробным инфицированием позволяет использовать их как маркер повреждения гематоэнцефалического барьера, своевременно прогнозировать, оценивать тяжесть поражения ЦНС и проводить раннюю терапевтическую коррекцию.

источник финансирования

Не указан.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.

СПИСОК ЛИТЕРАТУРЫ

- 1. Царегородцев А.Д., Ружицкая Е.А., Кистенева Л.Б. Персистирующие инфекции в педиатрии: современный взгляд на проблему // Российский вестник перинатологии и педиатрии. 2017. Т.62. №1 С. 5–9. [Tsaregorodtsev AD, Ruzhitskaya EA, Kisteneva LB. Persistent infections in pediatrics: a modem view on the problem. Rossiiskii vestnik perinatologii i pediatrii. 2017;62(1):5–9. (In Russ).]
- 2. Bale JF Jr. Cytomegalovirus infections. Semin Pediatr Neurol. 2012;19(3):101–106. doi: 10.1016/j.spen.2012.02.008.
- 3. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. *Clin Microbiol Rev.* 2014;27(1):21–47. doi: 10.1128/CMR.00031-13.
- 4. Cherpes TL, Matthews DB, Maryak SA. Neonatal herpes simplex virus infection. *Clin Obstet Gynecol*. 2012;55(4):938–944. doi: 10.1097/GRF.0b013e31827146a7.
- 5. Нисевич Л.Л., Талалаев А.Г., Каск Л.Н., и др. Врожденные вирусные инфекции и маловесные дети // Вопросы современной педиатрии. 2002. Т.1. №4 С. 9 –13. [Nisevich LL, Talalaev AG, Kask LN, et al. Vrozhdennye virusnye infektsii i malovesnye deti. Current pediatrics. 2002;1(4):9–13. (In Russ).]
- 6. Долгих Т.И., Белкова Т.Н., Тирская Ю.И., и др. Клинико-иммунологические аспекты внутриутробных инфекций с поражением центральной нервной системы у новорожденных // Цитокины и воспаление. 2011. Т.10. №1 С. 46–50. [Dolgikh TI, Belkova TN, Tirskaya Yul, et al. Clinical and immunological approaches to intrauterine infections with central nervous system affection in neonates. Cytokines & inflammation. 2011;10(1):46–50. (In Russ).]
- 7. Мамедбейли А.К. Сравнительная характеристика поражений центральной нервной системы у новорожденных с внутриутробными инфекциями различной этиологии // Вопросы практической педиатрии. 2010. №3 С. 95–96. [Mamedbeili AK. Sravnitel'naya kharakteristika porazhenii tsentral'noi nervnoi sistemy u novorozhdennykh s vnutriutrobnymi infektsiyami razlichnoi etiologii. Voprosy prakticheskoi pediatrii. 2010;(3):95–96. (In Russ).] 8. Таранушенко Т.Е., Окунева О.С., Демьянова И.М. Уровни белков нейрональной и глиальной природы в крови новорожденных при церебральной ишемии // Педиатрия. Журналим. Г.Н. Сперанского. 2010. Т.89. №1 С. 25–31. [Тагапиshenko ТЕ, Okuneva OS, Dem'yanova IM. Urovni belkov neironal'noi i glial'noi prirody v krovi novorozhdennykh pri tserebral'noi ishemii. Pediatriia. 2010;89(1):25–31. (In Russ).]
- 9. Максутова А.К. Особенности системного воспалительного ответа у доношенных и недоношенных детей при врожденной инфекции ДНК-вирусной этиологии: Автореферат. ...дисс. канд. мед. наук. Hoвосибирск; 2009. 44 с. [Maksutova AK. Osobennosti sistemnogo vospalitel'nogo otveta u donoshennykh

- i nedonoshennykh detei pri vrozhdennoi infektsii DNK- virusnoi etiologii. [dissertation abstract] Novosibirsk; 2009. 44 p. (In Russ).]
- 10. Кравченко Л.В., Афонин А.А. Особенности цитокинового статуса у детей первых месяцев жизни с генерализованной цитомегаловирусной инфекцией // Педиатрия. Журнал им. Г.Н. Сперанского. 2011. Т.90. №1 С. 39–43. [Kravchenko LV, Afonin AA. Osobennosti tsitokinovogo statusa u detei pervykh mesyatsev zhizni s generalizovannoi tsitomegalovirusnoi infektsiei. Pediatriia. 2011;90(1):39–43. (In Russ).]
- 11. Zarkesh M, Sedaghat F, Heidarzadeh A, et al. Diagnostic value of IL6, CRP, WBC, and absolute neutrophil count to predict serious bacterial infection in febrile infants. *Acta Med Iran*. 2015;53(7):408–411.
- 12. Çelik HT, Portakal O, Yiğit Ş, et al. Efficacy of new leukocyte parameters versus serum C-reactive protein, procalcitonin, and interleukin-6 in the diagnosis of neonatal sepsis. *Pediatr Int.* 2016;58(2):119–125. doi: 10.1111/ped.12754.
- 13. Cernada M, Badía N, Modesto V, et al. Cord blood interleukin-6 as a predictor of early-onset neonatal sepsis. *Acta Paediatr.* 2012;101(5):e203–207. doi: 10.1111/j.1651-2227.2011.02577.x.
- 14. Steinberger E, Hofer N, Resch B. Cord blood procalcitonin and Interleukin-6 are highly sensitive and specific in the prediction of early onset sepsis in preterm infants. *Scand J Clin Lab Invest*. 2014;74(5):432–436. doi: 10.3109/00365513.2014.900696.
- 15. Singh HV, Pandey A, Shrivastava AK, et al. Prognostic value of neuron specific enolase and IL10 in ischemic stroke and its correlation with degree of neurological deficit. *Clin Chim Acta*. 2013;419:136–138. doi: 10.1016/j.cca.2013.02.014.
- 16. Chalak LF, Sánchez PJ, Adams-Huet B, et al. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. *J Pediatr*. 2014;164(3):468–474.e1. doi: 10.1016/j.jpeds.2013.10.067.
- 17. Гараев В.Р., Зубарева О.Е., Шумилина М.В. Влияние содержания провоспалительных цитокинов в крови на повторную судорожную активность у новорожденных с гипоксически-ишемической энцефалопатией // Нейрохирургия и неврология детского возраста. 2011. №4 С. 49–51. [Garaev VR, Zubareva OE, Shumilina MV. Impact of having antiinflammatory cytokines in blood onto recurring convulsive activities of new-born babies with hypoxicischemic encephalopathy. Neirokhirurgiya i nevrologiya detskogo vozrasta. 2011;(4):49–51. (In Russ).]
- 18. Сеидбекова Ф.О. Факторы риска развития врождённых пороков у новорожденных в городе Баку: Автореф. дис. ... докт. мед. наук. Баку; 2015. 62 с. [Seidbekova FO. Faktory riska razvitiya vrozhdennykh porokov u novorozhdennykh v gorode Baku. [dissertation abstract] Baku; 2015. 62 р. (In Russ).]