О.И. Фомина^{1, 2}, Т.А. Кузнецова¹, А.В. Шульга^{1, 2}

1 Орловский государственный университет, Медицинский институт, Российская Федерация

² Детская областная клиническая больница, Орел, Российская Федерация

Уровни кальций-креатининового и фосфат-креатининового коэффициента мочи у новорожденных детей различного гестационного возраста

Контактная информация:

Фомина Ольга Игоревна, заведующая отделением патологии недоношенных детей БУЗ Орловской области «Детская областная клиническая больница», аспирант ФГБОУ ВПО «Орловский государственный университет»

Адрес: 302028, Орел, ул. Октябрьская, д. 4, тел.: (486) 276-13-71, e-mail: fomin.max1979@mail.ru

Статья поступила: 24.11.2013 г., принята к печати: 24.02.2014 г.

Цель исследования. Установить особенности экскреции кальция и фосфатов у новорожденных детей различного гестационного возраста в неонатальном периоде при различных видах вскармливания. Пациенты и методы исследования. Определялись уровни кальций-креатининового (Ca/Cr) и фосфат-креатининового (P/Cr) коэффициентов у 96 здоровых новорожденных 38–40 недель, находящихся на естественном вскармливании, и 146 недоношенных новорожденных 28–37 недель, находящихся на различных видах вскармливания. Результаты. У здоровых доношенных детей в раннем неонатальном периоде уровень Са/Сг коэффициента составил 0,9-2,2 (медиана -1,8) и уровень Р/Сг коэффициента — 0,8-2,1 (медиана -1,6). У недоношенных детей (28-37 нед) уровень Са/Сг коэффициента составил 0,9-2,4 (медиана -1,9), что сопоставимо с уровнем аналогичного показателя у доношенных новорожденных. Уровень Р/Ст коэффициента у недоношенных детей составил 0,7-3,1 (медиана -2,4), что превышает аналогичный показатель у доношенных детей. Уровни Ca/Cr и P/Cr коэффициентов тем выше, чем меньше срок гестации и масса при рождении. У недоношенных детей с очень низкой массой тела при вскармливании специализированными смесями выявлены гиперкальциурия и гиперфосфатурия. Выводы. Использование специализированных смесей у глубоконедоношенных детей (СГ < 33 нед) с ОНМТ приводит к повышенной экскреции кальция и фосфатов, уровень которых целесообразно мониторировать с помощью неинвазивного и информативного метода определения Са/Сг и Р/Сг коэффициентов. Вскармливание недоношенных детей с МПР > 1500 г только грудным молоком (при адекватной лактации у матери) позволяет избежать гиперкальций- и гиперфосфатурию и предотвратить риск развития почечной патологии.

Ключевые слова: новорожденные, недоношенные дети, экскреция кальция, экскреция фосфора, кальций-креатининовый (Ca/Cr) коэффициент, фосфат-креатининовый (P/Cr) коэффициент.

(Педиатрическая фармакология. 2014; 11 (2): 72-77)

O.I. Fomina^{1, 2}, T.A. Kuznetsova¹, A.V. Shulga^{1, 2}

¹ Orel State University, Medical School, Russian Federation

Calcium, Creatinine and Urinary Phosphate/Creatinine Ratio Concentrations in Neonates of Various Gestational Ages

Objective: specify peculiarities of calcium and phosphates excretion inneonates of various gestational ages and types of feeding in neonatal period. **Patients and methods.** Calcium-creatinine (Ca/Cr) and phosphate-creatinine (P/Cr) ratio concentrations were determined in 96 healthy neonates of 38–40 weeks of gestational age and 146 premature infants of 28–37 weeks of gestational age of various types of feeding. **Results.** The Ca/Cr ratio concentration in healthy term infants in the early neonatal period amounted to 0.9–2.2 (median -1.8), the P/Cr ratio concentration — 0.8–2.1 (median -1.6). The Ca/Cr ratio concentration in premature infants (28–37 weeks of gestational age) amounted to 0.9–2.4 (median -1.9), which is comparable to this parameter's value in term infants. The P/Cr ratio concentration amounted to 0.7–3.1 (median -2.4), which exceeds this parameter's value in term infants. The lesser the gestational age and birth weight, the higher the Ca/Cr and P/Cr ratio concentrations. The authors revealed hypercalciuria and hyperphosphaturia in premature infants with a very low body weight fed with specialized formulas. **Conclusions.** Use of specialized formulas in small premature infants (gestational age < 33 weeks) with VLBW results in excessive calcium and phosphates excretion. It is reasonable to monitor their concentrations using a non-invasive and informative method of determining Ca/Cr and P/Cr ratios. Feeding of premature infants with birth weight > 1,500 g with breast milk only (in case of the mother's adequate lactation) allows avoiding hypercalciuria and hyperphosphaturia and preventing risk of a nephritic pathology.

Key words: neonates, premature infants, calcium excretion, phosphorus excretion, calcium-creatinine (Ca/Cr) ratio, phosphate-creatinine (P/Cr) ratio.

(Pediatricheskaya farmakologiya — Pediatric pharmacology. 2014; 11 (2): 72–77)

² Regional Children's Clinicalhospital, Orel, Russian Federation

ВВЕДЕНИЕ

Рациональное вскармливание новорожденного ребенка в неонатальном периоде — залог его адекватного роста и развития не только в раннем, но и зрелом возрасте. Перевод на искусственное вскармливание является для ребенка «метаболическим стрессом», так как ни одна даже самая современная искусственная смесь не может быть полноценной заменой материнскому молоку [1].

Особое значение грудное вскармливание приобретает у недоношенных детей в связи с морфофункциональной незрелостью органов и систем, что приводит к метаболическим нарушениям, в частности дисбалансу кальция и фосфора.

Относительно высокая потребность недоношенных детей в пищевых веществах находится в противоречии с ограниченными возможностями к их усвоению: избыточная дотация белка, минеральных солей, жидкостей может привести к функциональным нарушениям со стороны почек [2].

Женское молоко после преждевременных родов имеет особый состав, в частности в отношении содержания белка (1,86 \pm 0,19 г/100 мл), фосфора (15 мг/100 мл), кальция (30 мг/100 мл), в большей степени соответствующий потребностям недоношенных детей и их способности к перевариванию, усвоению и обеспечению гомеостаза [3]. Согласно современным рекомендациям по вскармливанию недоношенных детей, для обеспечения темпов прибавки массы тела, близких к внутриутробным, предлагается использовать специализированные смеси с повышенным содержанием белка (от 2,03 до 2,5 г/100 мл), кальция (от 87 до 120 мг/100 мл), фосфора (от 47 до 73 мг/100 мл) [1]. Однако, увеличение нагрузки на функционально незрелые почки может привести к нарушению обмена веществ, в частности фосфорно-кальциевого баланса. В неонатальном периоде эти нарушения могут не иметь выраженных клинических проявлений, что требует поиска информативных и нетравматичных для новорожденных методов диагностики дисбаланса данных электролитов. Этим условиям отвечает определение кальций-креатининового (Ca/Cr) и фосфат-креатининового (P/Cr) коэффициентов в разовой порции мочи.

По данным зарубежных исследователей, Ca/Cr для детей от 0 до 6 мес составил 0.1-2.6; P/Cr — 1.4-20.0 [4]. По данным Г.П. Грушецкой (2003 г.), уровень Ca/Cr коэффициента у доношенных детей составил 0.64-0.68, P/Cr коэффициента — 0.28-0.3 [5].

Цель исследования: установить особенности экскреции кальция и фосфатов при различных видах вскармливания у недоношенных детей в неонатальном периоде с учетом региональных особенностей.

ПАЦИЕНТЫ И МЕТОДЫ

У 242 детей различного гестационного возраста в неонатальном периоде определяли уровни кальций-креатининового и фосфат-креатининового коэффициентов.

Критерии включения в І группу:

96 доношенных новорожденных со сроком гестации 38-40 нед, оценкой по шкале APGAR 7-9 баллов, нахо-

дящихся на естественном вскармливании (ЕВ). С учетом транзиторных состояний новорожденных, в частности мочевой системы, для определения Ca/Cr и P/Cr коэффициентов проводился сбор утренней порции мочи на 4–7-е сут после рождения.

Критерии включения во II группу:

146 недоношенных новорожденных, средний гестационный возраст которых составил $33,3\pm2,4$ (диапазон 28-37) нед, масса тела при рождении (МПР) — более 1000 г. Распределение детей по видам вскармливания было случайным, из них на ЕВ находились 29 (19,8%), на искусственном вскармливании (ИВ) — 55 (37,7%), на смешанном (СВ) — 52 (35,6%), получали грудное молоко с обогатителем (ОМ) — 10 (6,8%). У детей данной группы в возрасте 2-3 нед проводился сбор утренней порции мочи для определения Ca/Cr и P/Cr коэффициентов. Срок сбора мочи обусловлен тем, что наиболее активное созревание канальцев отмечается на 32-36-й нед гестации и, следовательно, позволяет сравнивать уровни этих коэффициентов с аналогичными показателями у доношенных детей [6].

Критерии исключения: гемодинамически значимые фетальные коммуникации по данным клинических и инструментальных методов обследования, пороки развития органов и систем, генетическая и эндокринная патология, органическое поражение ЦНС, наличие признаков ТОRCH-синдрома, внутрижелудочковое кровоизлияние II—III степени, окклюзионная гидроцефалия, тяжелые инфекционные болезни (сепсис, некротизирующий энтероколит), гемолитическая болезнь новорожденных.

В табл. 1 приводится клиническая характеристика обследованных недоношенных детей: рожденные с очень низкой массой тела (ОНМТ) — 36 (24,6%), с низкой массой тела (НМТ) — 95 (65,1%), с массой 2500 г и более — 15 (10,3%).

Ведущей патологией, обусловливающей тяжесть состояния, была церебральная ишемия, при этом III степень выявлена у детей с ОНМТ; II степень — у детей с НМТ. Синдром дыхательных расстройств, бронхолегочная дисплазия, внутриутробная инфекция в качестве основной патологии чаще определялись у детей с ОНМТ.

Среди сопутствующей нозологии определялись малая аномалия развития сердца (МАРС), гемодинамически незначимая функционирующая фетальная коммуникация (открытое овальное окно, открытый артериальный проток), конъюгационная желтуха (от 73 до 100% случаев), ранняя анемия недоношенных, ретинопатия.

Согласно стандартам выхаживания недоношенных детей всем пациентам проводилось комплексное лечение в соответствии с тяжестью и характером патологического процесса, включающее антибактериальную, этиопатогенетическую, симптоматическую, метаболическую терапию и реабилитационные мероприятия. Все недоношенные дети получали витамин D в профилактической дозе (1000 МЕ) с 3–4-й нед жизни в зависимости от срока гестации при рождении (после сбора мочи для определения Ca/Cr и P/Cr коэффициентов).

Таким образом, анализ клинико-анамнестических данных и особенностей течения неонатального периода показал, что в группе обследованных недоношен-

Таблица 1. Соматический и неврологический статус недоношенных детей (n = 146)

	Масса при рождении							
Заболевания	1000-1500 r (n = 36)		1501-250	00 Γ (n = 95)	> 2501 r (n = 15)			
	Абс.	%	Абс.	%	Абс.	%		
Церебральная ишемия:								
I степени	-	-	28	29,5	3	20		
II степени	14	38,9	58	61,1	12	80		
III степени	22	61,1	9	9,5	-	-		
Синдром дыхательных расстройств	17	47,2	9	9,5	2	13,3		
Бронхолегочная дисплазия, пневмония, обструктивный синдром	5	13,9	8	8,4	-	-		
Внутриутробные инфекции неуточненного генеза	5	13,9	5	5,3	-	-		
МАРС, функционирующая фетальная коммуникация	36	100	88	92,6	14	86,7		
Конъюгационная желтуха	29	80,6	86	90,5	11	73,3		
Ретинопатия недоношенных	19	52,8	7	7,4	-	-		
Ранняя анемия недоношенных II-III степени	26	72,2	14	14,7	-	-		
Врожденный дакриоцистит, конъюнктивит	1	2,8	6	6,3	4	26,6		
Пупочная, паховая грыжи	9	25,0	7	7,4	-	-		
Водянка оболочек яичек	4	11,1	4	4,2	-	-		

Примечание. МАРС — малые аномалии развития сердца.

ных детей отсутствовала патология, значимо влияющая на кальций-фосфорный обмен.

Методы. Для оценки уровней экскреции кальция и фосфатов определяли Ca/Cr и P/Cr коэффициенты.

Для оценки преимущества грудного молока перед специализированной смесью проводилось определение уровней кальций- и фосфатурии у детей различного гестационного возраста в зависимости от видов вскармливания (с учетом повышенного содержания в смесях кальция и фосфора по сравнению с грудным молоком).

Следует отметить, что нормальное (гауссовское) распределение при анализе Ca/Cr и P/Cr коэффициентов получено не было, в связи с чем были исключены случаи (выбросы), не входившие в репрезентативную выборку. Число случаев с определением Ca/Cr в группе недоношенных детей составило 142, P/Cr — 138.

При оценке гиперкальциурии в зависимости от МПР и срока гестации за условную норму принимался 75% перцентиль уровня кальциурии у недоношенных детей на естественном вскармливании, который составил 2,5.

При оценке гиперфосфатурии в зависимости от МПР и срока гестации за условную норму принимался 75% перцентиль уровня фосфатурии у недоношенного ребенка на естественном вскармливании, который составил 2,1.

Уровни природных метаболитов в моче определяли следующим образом: кальция — арсеназным методом (реактив арсеназа III); фосфатов — набором с реактивом молибдата аммония; креатинина — реакцией Яффе с пикриновой кислотой на аппарате Sapphire-400 (Tokyo

Boeti Ltd, Япония). Вычисление кальций-креатининового и фосфат-креатининового коэффициентов проводилось путем деления значения Са и Р (ммоль/л) на значение Сг (ммоль/л).

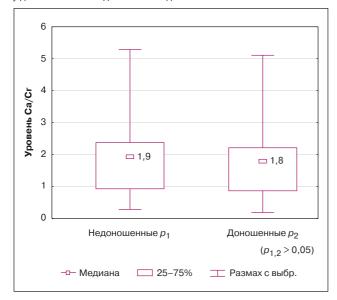
Статистическая обработка данных проводилась с помощью стандартного пакета программ Statistica 6.0. Оценка достоверности различий в изучаемых группах пациентов проводилась на основании параметрического критерия Стьюдента, достоверность различий распределения показателей между группами (р) определялась по критерию χ^2 . Для определения 25–75% процентилей Ca/Cr и P/Cr строились гистограммы, которые считались репрезентативными, если в одной ячейке было представлено не менее 5 случаев. Для устранения случайных ошибок в исходных данных проводилось локальное сглаживание гистограммы по 7 точкам с равномерным распределением ячеек по методу наименьших квадратов полиномом 3-й степени. Далее по «сглаженным» данным вычислялась кумулятивная кривая, по которой и находились 25-75% процентили Са/Сг и Р/Сг. Для оценки корреляции Ca/Cr и P/Cr с гестационным возрастом, МПР, содержанием кальция и фосфора в грудном молоке и специализированных искусственных смесях проводился линейный корреляционный анализ по Пирсону с вычислением соответствующего коэффициента (r). Для общей выборки (n = 242) при p < 0.05 значимым являлся r > 0.13. Для группы недоношенных (n = 146) при p < 0.05 значимым являлся r > 0.17 [7]. Статистически значимыми считали различия между показателями при уровне вероятности p < 0.05.

Таблица 2. Уровни Ca/Cr и P/Cr коэффициентов в группе доношенных детей (n = 96)

Показатели	Ca/Cr	P/Cr
Средние значения (медиана)	1,8	1,6
Интерквартильный размах	0,9-2,2	0,8-2,1

Таблица 3. Уровни Ca/Cr и P/Cr коэффициентов в группе недоношенных детей

Показатели	Ca/Cr (n = 142)	P/Cr (n = 138)
Средние значения (медиана)	1,9	2,4
Интерквартильный размах	0,9-2,4	0,7-3,1


Следует отметить, что нормальное (гауссовское) распределение при анализе Ca/Cr и P/Cr коэффициентов получено не было, в связи с чем были исключены случаи (выбросы), не входившие в репрезентативную выборку. Число случаев с определением Ca/Cr в группе недоношенных детей составило 142, P/Cr — 138.

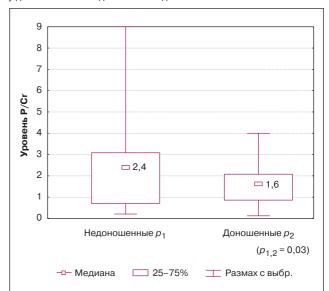
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

В табл. 2 представлены данные средних значений (медианы) и интерквартильного размаха (ИКР) между 25–75% перцентилями Ca/Cr и P/Cr коэффициентов в группе доношенных детей со сроком гестации 38–40 нед, находящихся на естественном вскармливании.

Уровни Ca/Cr и P/Cr оказались близки, то есть экскреция кальция и фосфора у здоровых доношенных детей практически одинаковы. Полученные показатели оказались сопоставимы с данными зарубежной литературы для детей от 0 до 6 мес и отличаются от показателей Г.П. Грушецкой, что по нашему мнению, связано с региональными особенностями — Орловская область является эндемичной по мочекаменной болезни в связи повышенным уровнем железа и жесткостью воды [8].

Рис. 1. Сравнительный анализ уровней Ca/Cr коэффициентов у доношенных и недоношенных детей*

Примечание. * — число выбросов по Ca/Cr среди недоношенных равно 4.


В табл. З представлены данные средних значений (медианы) и ИКР между 25–75% перцентилями Са/Сг и Р/Сг коэффициентов в группе недоношенных детей. Полученные уровни Са/Сг и Р/Сг коэффициентов ближе к уровням этих коэффициентов в группе доношенных детей (рис. 1, 2).

В отношении уровней Са/Сг коэффициентов в группе доношенных и недоношенных детей значимых различий не выявлено (см. рис. 1). При сравнении уровней Р/Сг коэффициентов в группе недоношенных детей выявлен более высокий уровень фосфатурии (см. рис. 2).

Уровни кальциурии, как средние значения, так и ИКР между 25-75% перцентилями, оказались практически одинаковы при различных видах вскармливания ($p_{1,\,2,\,3}>0.05$; рис. 3). Уровни Р/Сг коэффициента, как средние значения, так и ИКР между 25-75% перцентилями, оказались выше при использовании специализированных смесей по сравнению с естественным вскармливанием ($p_{1,\,2}=0.008$, $p_{1,\,3}=0.02$, $p_{2,\,3}=0.03$; рис. 4).

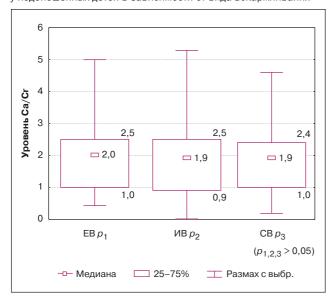

Корреляционный анализ выявил следующие статистически значимые связи показателей Ca/Cr и P/Cr коэффициентов в зависимости от срока гестации, МПР,

Рис. 2. Сравнительный анализ уровня P/Cr коэффициента у доношенных и недоношенных детей*

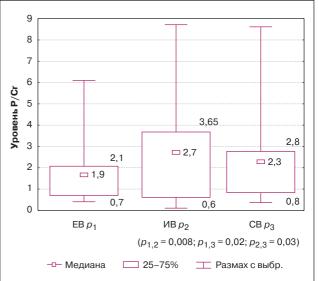

Примечание. * — число выбросов по P/Cr среди недоношенных равно 8.

Рис. 3. Сравнительный анализ уровня Ca/Cr коэффициента у недоношенных детей в зависимости от вида вскармливания*

Примечание. * — число выбросов по Ca/Cr при естественном вскармливании (EB) — 0; при искусственном вскармливании (ИВ) — 1; при смешанном вскармливании (CB) — 1.

Рис. 4. Сравнительный анализ уровней Р/Сг коэффициентов у недоношенных детей в зависимости от вида вскармливания*

Примечание. * — число выбросов по P/Cr при естественном вскармливании (EB) — 1; при искусственном вскармливании (ИВ) — 5; при смешанном вскармливании (СВ) — 1.

содержания кальция и фосфора в грудном молоке и специализированной смеси для недоношенных детей:

- 1) отрицательную связь показателей Ca/Cr и P/Cr коэффициентов со сроком гестации (соответственно, r= -0,20; p= 0,002 и r= -0,20; p= 0,002); МПР (r= -0,14; p= 0,03 и r= -0,24; p= 0,0002): то есть чем срок гестации и МПР были меньше, тем чаще отмечалось повышенное выведение кальция и фосфатов;
- 2) положительную связь между содержанием кальция/фосфора в специализированной смеси и *сро*-

ком гестации и P/Cr при их совместной корреляции $(r=0.18;\ p<0.05)$: то есть у недоношенных детей, получавших специализированную смесь с повышенным относительно грудного молока содержанием кальция и фосфора, отмечались высокие уровни фосфатурии.

Достоверной разницы в частоте гиперкальциурии в зависимости от МПР не получено, однако отмечена тенденция к ее снижению у детей с МПР > 1500 г, особенно находящихся на искусственном вскармливании (табл. 4).

Таблица 4. Частота гиперкальциурии в зависимости от массы при рождении и вида вскармливания

	Масса при рождении						
Вид вскармливания	1000–1500 г (n = 24)		1501–2500 Γ (<i>n</i> = 98)		> 2500 r (n = 14)		
	Абс.	%	Абс.	%	Абс.	%	
Естественное, $n = 29 (p_1)$	-/2*	-	6/19	31,6	2/8	25,0	
Искусственное, $n = 54 (p_2)$	9/17	53,0	6/36	16,7	-/2	-	
Смешанное, $n = 52 (p_3)$	1/5	20,0	11/43	25,6	1/4	25,0	

Примечание. * — число случаев гиперкальциурии/количество детей с определенным видом вскармливания и МПР; $p_{1, 2, 3} > 0.05$.

Таблица 5. Частота гиперкальциурии в зависимости от срока гестации и вида вскармливания

	Срок гестации						
Вид вскармливания	28-32 мес (n = 44)		33-34 mec (n = 37)		> 35 мес (n = 55)		
	Абс.	%	Абс.	%	Абс.	%	
Естественное, $n = 29 (p_1)$	1/8*	12,5	3/5	60,0	4/16	25,0	
Искусственное, $n = 54 (p_2)$	11/21	52,4 p _{1, 2} = 0,03	4/15	26,7	-/19	-	
Смешанное, <i>n</i> = 52 (<i>p</i> ₃)	4/15	26,7	4/17	23,5	5/20	25,0	

Примечание. * — число случаев гиперкальциурии/количество детей с определенным видом вскармливания и сроком гестации; $p_{1, 2, 3} > 0,05$. Здесь и в табл. 6, 7: пояснения к значениям, выделенным полужирным шрифтом, даны в тексте.

Таблица 6. Частота гиперфосфатурии в зависимости от массы при рождении и вида вскармливания

	Масса при рождении						
Вид вскармливания	1000–1500 г (n = 24)		1501–2500 Γ (<i>n</i> = 98)		> 2500 r (n = 14)		
	Абс.	%	Абс.	%	Абс.	%	
Естественное, $n = 28 (p_1)$	1/2*	50,0	2/19	10,5	1/8	12,5	
Искусственное, $n = 50 \ (p_2)$	10/17	58,8	12/36	33,3 p _{1, 2} = 0,008	-/2	-	
Смешанное, <i>n</i> = 51 (<i>p</i> ₃)	2/5	40,0	16/43	37,2 p _{1, 3} = 0,007	2/4	50,0	

Примечание. * — число случаев гиперфосфатурии/количество детей с определенным видом вскармливания и МПР.

Таблица 7. Частота гиперфосфатурии в зависимости от срока гестации и вида вскармливания

	Срок гестации						
Вид вскармливания	28-32 мес (n = 44)		33-34 мес (n = 37)		> 35mec (n = 55)		
	Абс.	%	Абс.	%	Абс.	%	
Естественное, $n = 28 (p_1)$	1/8*	12,5	1/5	20,0	2/16	12,5	
Искусственное, <i>n</i> = 50 (<i>p</i> ₂)	14/21	66,7 p _{1, 2} = 0,003	4/15	26,7	4/19	26,7 p _{1, 2} = 0,04	
Смешанное, <i>n</i> = 51 (<i>p</i> ₃)	9/15	60,0 p _{1, 3} = 0,005	5/17	29,4	6/20	30,0 p _{1,3} = 0,03	

Примечание. * — число случаев гиперфосфатурии/количество детей с определенным видом вскармливания и сроком гестации.

Частота гиперкальциурии в группе глубоконедоношенных детей достоверно выше при ИВ по сравнению с EB (табл. 5).

У детей > 1500 г, находящихся на ЕВ, частота гиперфосфатурии оказалась ниже, чем в группе детей на ИВ ($p_{1,\ 2}=0,008$) и СВ ($p_{1,\ 3}=0,007$). Достоверно судить о частоте гиперфосфатурии в группе детей с ОНМТ, находящихся на ЕВ, невозможно из-за малой выборки (n=2; табл. 6).

При анализе частоты гиперфосфатурии в зависимости от гестационного возраста выявлено следующее: у глубоконедоношенных детей частота гиперфосфатурии достоверно реже встречается при ЕВ, чем при ИВ и СВ, причем тенденция к снижению частоты гиперфосфатурии по мере увеличения гестационного возраста отмечается

среди недоношенных детей, получающих специализированные смеси (табл. 7).

ЗАКЛЮЧЕНИЕ

Использование специализированных смесей у глубоконедоношенных детей (срок гестации < 33 нед) с ОНМТ приводит к повышенной экскреции кальция и фосфатов, уровень которых целесообразно мониторировать с помощью неинвазивного и информативного метода определения Ca/Cr и P/Cr коэффициентов. Доказанная возможность вскармливания недоношенных детей с МПР > 1500 г только грудным молоком (при адекватной лактации у матери) позволяет избежать гиперкальций- и гиперфосфатурию и предотвратить риск развития почечной патологии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рациональное вскармливание недоношенных детей: методические указания. Министерство здравоохранения и социального развития Российской Федерации, Российская акад. мед. наук, Науч. центр здоровья детей, ФГУ НЦ акушерства, гинекологии и перинатологии им. В.И. Кулакова Министерства здравоохранения России, Союз педиатров России. 2-е изд., доп. и перераб. М.: Союз педиатров России. 2010. 72 с.
- 2. Фурцев В.И., Прахин Е.И., Грицан А.И. Изменение политики педиатрической службы здравоохранения в отношении практики грудного вскармливания. *Педиатрия*. 2002; 1: 69–71.
- 3. Педиатрия по Нельсону. М.: Рид Элсивер, МИА. 2009; 2: 69–96.
- 4. Handbook/ESPN. 2008; 130: 43-60.

- 5. Грушецкая Г.П. Особенности экскреции кальция и фосфора у новорожденных детей. Автореф. дис. ... канд. мед. наук 14.00.09. *М.*, 2003. 24 с.
- 6. Папаян А.В., Стяжкина И.С. Неонатальная нефрология: руководство. Спб.: Питер, 2002. 448 с.
- 7. Львовский Е.Н. Статистические методы построения эмпирических формул: учебное пособие для вузов. 2-е издание, перераб. и доп. *М.: Высшая школа*. 1988. С. 239.
- 8. Ларина Т.А., Кузнецова Т.А., Цыгин А.Н. Идиопатическая гиперкальциурия в структуре причин мочекаменной болезни (МКБ) у детей Орловской области. *Российский педиатрический журнал.* 2007; 3: 46–48.